【題目】有一挖寶游戲,有一寶藏被隨意藏在下面圓形區(qū)域內(nèi),(圓形區(qū)域被分成八等份)如圖

(1)假如你去尋找寶藏,你會(huì)選擇哪個(gè)區(qū)域(區(qū)域;區(qū)域;區(qū)域)?為什么?在此區(qū)域一定能夠找到寶藏嗎?

(2)寶藏藏在哪兩個(gè)區(qū)域的可能性相同?

(3)如果埋寶藏的區(qū)域如圖(圖中每個(gè)方塊完全相同),(1)(2)的結(jié)果又會(huì)怎樣?

【答案】(1)會(huì)選擇區(qū)域;(2)寶藏藏在區(qū)域和區(qū)域的可能性相同,可能性都是;(3)如果埋寶藏的區(qū)域如圖(圖中每個(gè)方塊完全相同),(1)(2)的結(jié)果完全相同.

【解析】

(1)根據(jù)扇形面積的大小直接分析得到寶藏的概率即可得出答案;

(2)根據(jù)扇形面積的大小直接分析得到寶藏的概率即可得出答案;

(3)根據(jù)小正方形的面積相同進(jìn)而分析按得出即可.

解:(1)會(huì)選擇區(qū)域;區(qū)域和區(qū)域的可能性是、區(qū)域的可能性是,藏在區(qū)域的可能性大;

在此區(qū)域也不一定能夠找到寶藏,因?yàn)閰^(qū)域的可能性是,不是.(只要說出誰(shuí)的可能性大可酌情給分);

(2)寶藏藏在區(qū)域和區(qū)域的可能性相同,可能性都是

(3)如果埋寶藏的區(qū)域如圖(圖中每個(gè)方塊完全相同),(1)(2)的結(jié)果完全相同.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,AC平分∠BAD,CEABE,且∠B+D=180°,

求證:AE=AD+BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°,點(diǎn)EF在邊AB上,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處,再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線上的點(diǎn)B'處.

1)求∠ECF的度數(shù);

2)若CE4B'F1,求線段BC的長(zhǎng)和ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l與⊙O 相離,OA⊥l于點(diǎn)A,交⊙O 于點(diǎn)P,點(diǎn)B是⊙O上一點(diǎn),連接BP并延長(zhǎng),交直線l于點(diǎn)C,使得AB=AC.

(1)求證:AB是⊙O的切線;

(2)若PC=2,OA=3,求線段PB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在RtABC中,∠C90°,以斜邊AB為邊向外作正方形ABDE,且正方形對(duì)角線交于點(diǎn)O,連接OC,已知AC4,OC7,則另一條直角邊BC的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸于點(diǎn),過軸,雙曲線、兩點(diǎn)(點(diǎn)在已知直線上),若,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=BC,∠ABC=90°,點(diǎn)D、E分別是邊ABBC的中點(diǎn),點(diǎn)FG是邊AC的三等分點(diǎn),DF、EG的延長(zhǎng)線相交于點(diǎn)H,連接HA、HC

(1)求證:四邊形FBGH是菱形;

(2)求證:四邊形ABCH是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,內(nèi)并排不重疊放入邊長(zhǎng)為1的小正方形紙片,第一層小紙片的一條邊都在AB上,首尾兩個(gè)正方形各有一個(gè)頂點(diǎn)分別在AC、BC上,依次這樣擺放上去,則最多能擺放  個(gè)小正方形紙片.

A. 14個(gè) B. 15個(gè) C. 16個(gè) D. 17個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于一次函數(shù)y=kx+bk≠0),我們稱函數(shù)y[m]=為它的m分函數(shù)(其中m為常數(shù)).例如,y=3x+24分函數(shù)為:當(dāng)x≤4時(shí),y[4]=3x+2;當(dāng)x4時(shí),y[4]=-3x-2

1)如果y=x+1-1分函數(shù)為y[-1],

①當(dāng)x=4時(shí),y[-1]______;當(dāng)y[-1]=-3時(shí),x=______

②求雙曲線y=y[-1]的圖象的交點(diǎn)坐標(biāo);

2)如果y=-x+20分函數(shù)為y[0],正比例函數(shù)y=kxk≠0)與y=-x+20分函數(shù)y[0]的圖象無交點(diǎn)時(shí),直接寫出k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案