【題目】有一挖寶游戲,有一寶藏被隨意藏在下面圓形區(qū)域內(nèi),(圓形區(qū)域被分成八等份)如圖.
(1)假如你去尋找寶藏,你會(huì)選擇哪個(gè)區(qū)域(區(qū)域;區(qū)域;區(qū)域)?為什么?在此區(qū)域一定能夠找到寶藏嗎?
(2)寶藏藏在哪兩個(gè)區(qū)域的可能性相同?
(3)如果埋寶藏的區(qū)域如圖(圖中每個(gè)方塊完全相同),(1)(2)的結(jié)果又會(huì)怎樣?
【答案】(1)會(huì)選擇區(qū)域;(2)寶藏藏在區(qū)域和區(qū)域的可能性相同,可能性都是;(3)如果埋寶藏的區(qū)域如圖(圖中每個(gè)方塊完全相同),(1)(2)的結(jié)果完全相同.
【解析】
(1)根據(jù)扇形面積的大小直接分析得到寶藏的概率即可得出答案;
(2)根據(jù)扇形面積的大小直接分析得到寶藏的概率即可得出答案;
(3)根據(jù)小正方形的面積相同進(jìn)而分析按得出即可.
解:(1)會(huì)選擇區(qū)域;區(qū)域和區(qū)域的可能性是、區(qū)域的可能性是,藏在區(qū)域的可能性大;
在此區(qū)域也不一定能夠找到寶藏,因?yàn)閰^(qū)域的可能性是,不是.(只要說(shuō)出誰(shuí)的可能性大可酌情給分);
(2)寶藏藏在區(qū)域和區(qū)域的可能性相同,可能性都是;
(3)如果埋寶藏的區(qū)域如圖(圖中每個(gè)方塊完全相同),(1)(2)的結(jié)果完全相同.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AC平分∠BAD,CE⊥AB于E,且∠B+∠D=180°,
求證:AE=AD+BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)E,F在邊AB上,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處,再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線上的點(diǎn)B'處.
(1)求∠ECF的度數(shù);
(2)若CE=4,B'F=1,求線段BC的長(zhǎng)和△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l與⊙O 相離,OA⊥l于點(diǎn)A,交⊙O 于點(diǎn)P,點(diǎn)B是⊙O上一點(diǎn),連接BP并延長(zhǎng),交直線l于點(diǎn)C,使得AB=AC.
(1)求證:AB是⊙O的切線;
(2)若PC=2,OA=3,求線段PB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對(duì)角線交于點(diǎn)O,連接OC,已知AC=4,OC=7,則另一條直角邊BC的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線交軸于點(diǎn),過(guò)作軸,雙曲線過(guò)、兩點(diǎn)(點(diǎn)在已知直線上),若,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,AB=BC,∠ABC=90°,點(diǎn)D、E分別是邊AB、BC的中點(diǎn),點(diǎn)F、G是邊AC的三等分點(diǎn),DF、EG的延長(zhǎng)線相交于點(diǎn)H,連接HA、HC.
(1)求證:四邊形FBGH是菱形;
(2)求證:四邊形ABCH是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,在內(nèi)并排不重疊放入邊長(zhǎng)為1的小正方形紙片,第一層小紙片的一條邊都在AB上,首尾兩個(gè)正方形各有一個(gè)頂點(diǎn)分別在AC、BC上,依次這樣擺放上去,則最多能擺放 個(gè)小正方形紙片.
A. 14個(gè) B. 15個(gè) C. 16個(gè) D. 17個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于一次函數(shù)y=kx+b(k≠0),我們稱函數(shù)y[m]=為它的m分函數(shù)(其中m為常數(shù)).例如,y=3x+2的4分函數(shù)為:當(dāng)x≤4時(shí),y[4]=3x+2;當(dāng)x>4時(shí),y[4]=-3x-2.
(1)如果y=x+1的-1分函數(shù)為y[-1],
①當(dāng)x=4時(shí),y[-1]______;當(dāng)y[-1]=-3時(shí),x=______.
②求雙曲線y=與y[-1]的圖象的交點(diǎn)坐標(biāo);
(2)如果y=-x+2的0分函數(shù)為y[0],正比例函數(shù)y=kx(k≠0)與y=-x+2的0分函數(shù)y[0]的圖象無(wú)交點(diǎn)時(shí),直接寫(xiě)出k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com