【題目】如圖,直線分別與軸,軸交于點(diǎn),,過(guò)點(diǎn)的直線交軸于點(diǎn).為的中點(diǎn),為射線上一動(dòng)點(diǎn),連結(jié),,過(guò)作于點(diǎn).
(1)直接寫(xiě)出點(diǎn),的坐標(biāo):(______,______),(______,______);
(2)當(dāng)為中點(diǎn)時(shí),求的長(zhǎng);
(3)當(dāng)是以為腰的等腰三角形時(shí),求點(diǎn)坐標(biāo);
(4)當(dāng)點(diǎn)在線段(不與,重合)上運(yùn)動(dòng)時(shí),作關(guān)于的對(duì)稱點(diǎn),若落在軸上,則的長(zhǎng)為_______.
【答案】(1)-2,0;2,0;(2);(3)當(dāng)或時(shí),是以為腰的等腰三角形;(4).
【解析】
(1)先根據(jù)求出A,B的坐標(biāo),再把B點(diǎn)坐標(biāo)代入求出b值,即可求解C點(diǎn)坐標(biāo),再根據(jù)為的中點(diǎn)求出D點(diǎn)坐標(biāo);
(2)先求出P點(diǎn)坐標(biāo)得到,再根據(jù)即可求解;
(3)根據(jù)題意分① ②,即可列方程求解;
(4)根據(jù)題意作圖,可得對(duì)稱點(diǎn)即為A點(diǎn),故AD=PD=4,設(shè),作PF⊥AC于F點(diǎn),得DF=2-x,PF=-x+4,利用Rt△PFD列方程解出x,得到P點(diǎn)坐標(biāo),再根據(jù)坐標(biāo)間的距離公式即可求解.
(1)由直線AB的解析式為,
令y=0,得x=-2,
∴,
令x=0,得y=4,∴B(0,4)
把B(0,4)代入,求得b=4,
∴直線BC的解析式為
令y=0,得x=4,∴
∵為的中點(diǎn)
∴
故答案為:-2,0;2,0;
(2)由(1)得B(0,4),
當(dāng)為的中點(diǎn)時(shí),則,
∵為的中點(diǎn),
∴軸,
,,
∴
∵,
∴
(3)∵點(diǎn)是射線上一動(dòng)點(diǎn),設(shè),當(dāng)是以為腰的等腰三角形時(shí),
①若,,解得:,(舍去),此時(shí);
②若,,解得:,此時(shí).
綜上,當(dāng)或時(shí),是以為腰的等腰三角形.
(4)∵關(guān)于的對(duì)稱點(diǎn),若落在軸上
∴點(diǎn)為A點(diǎn),
∴AD=PD=4,
設(shè),作PF⊥AC于F點(diǎn),
∴DF=2-x,PF=-x+4,
在Rt△PFD中,DF2+PF2=DP2
即(2-x)2+(-x+4)2=42
解得x=3-(3+舍去)
∴P(3-,+1),
∴==
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)水平放置的圓錐的主視圖為底邊長(zhǎng)2cm、腰長(zhǎng)4cm的等腰三角形.
試求:(1)該圓錐的表面積.
(2)圓錐的側(cè)面展開(kāi)圖的扇形的圓心角度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過(guò)A(2,0),B(0,﹣6)兩點(diǎn),
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對(duì)稱軸與x軸交于點(diǎn)C,連接BA,BC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了進(jìn)一步豐富學(xué)生的課外閱讀,欲增購(gòu)一些課外書(shū),為此對(duì)該校一部分學(xué)生進(jìn)行了一次“你最喜歡的書(shū)籍”問(wèn)卷調(diào)查(每人只選一項(xiàng)).根據(jù)收集到的數(shù)據(jù),繪制成如下統(tǒng)計(jì)圖(不完整):
請(qǐng)根據(jù)圖中提供的信息,完成下列問(wèn)題:
(1)在這次問(wèn)卷調(diào)查中,一共抽查了 名學(xué)生;并在圖中補(bǔ)全條形統(tǒng)計(jì)圖;
(2)如果全校共有學(xué)生1600名,請(qǐng)估計(jì)該校最喜歡“科普”書(shū)籍的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,要判定與相似,欲添加一個(gè)條件,下列可行的條件有( )
①;②;③;④;⑤.
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于等腰三角形,有以下說(shuō)法:
(1)有一個(gè)角為的等腰三角形一定是銳角三角形
(2)等腰三角形兩邊的中線一定相等
(3)兩個(gè)等腰三角形,若一腰以及該腰上的高對(duì)應(yīng)相等,則這兩個(gè)等腰三角形全等
(4)等腰三角形兩底角的平分線的交點(diǎn)到三邊距離相等
其中,正確說(shuō)法的個(gè)數(shù)為( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊中,厘米,厘米,如果點(diǎn)以厘米的速度運(yùn)動(dòng).
(1)如果點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng).點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng),它們同時(shí)出發(fā),若點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度相等:
①經(jīng)過(guò)“秒后,和是否全等?請(qǐng)說(shuō)明理由.
②當(dāng)兩點(diǎn)的運(yùn)動(dòng)時(shí)間為多少秒時(shí),剛好是一個(gè)直角三角形?
(2)若點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度不相等,點(diǎn)從點(diǎn)出發(fā),點(diǎn)以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)同時(shí)出發(fā),都順時(shí)針沿三邊運(yùn)動(dòng),經(jīng)過(guò)秒時(shí)點(diǎn)與點(diǎn)第一次相遇,則點(diǎn)的運(yùn)動(dòng)速度是__________厘米秒.(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,矩形ABCD的頂點(diǎn)D在反比例函數(shù)(x<0)的圖象上,頂點(diǎn)B,C在x軸上,對(duì)角線AC的延長(zhǎng)線交y軸于點(diǎn)E,連接BE,△BCE的面積是6,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,, 是的角平分線.
(1)如圖 1,求證:;
(2)如圖 2,作的角平分線交線段于點(diǎn),若,求的面積;
(3)如圖 3,過(guò)點(diǎn)作于點(diǎn),點(diǎn)是線段上一點(diǎn)(不與 重合),以為一邊,在 的下方作,交延長(zhǎng)線于點(diǎn),試探究線段,與之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com