【題目】如圖,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中點,P是對角線AC上的一個動點,則PE+PB的最小值是

【答案】
【解析】解:作E點關(guān)于AC對稱點E′點,連接E′B,E′B與AC的交點即是P點,
∵菱形ABCD中,AB=2,∠BAD=60°,E是AB的中點,
∴AE′=AE=BE=1,
∴△AEE′為等邊三角形,
∴∠AEE′=60°,
∴∠E′EB=120°,
∵BE=EE′,
∴∠EE′B=30°,
∴∠AE′B=90°,
BE′= =
∵PE+PB=BE′,
∴PE+PB的最小值是:
故答案為:

根據(jù)軸對稱最短問題作法首先求出P點的位置,再結(jié)合菱形的性質(zhì)得出△AEE′為等邊三角形,進而求出PE+PB的最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OA平分EOC

(1)若EOC=70°,求BOD的度數(shù);

(2)若EOCEOD=2:3,求BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

(1)9+(﹣7)+10+(﹣3)+(﹣9)

(2)12+(﹣14)+6+(﹣7)

(3)﹣

(4)﹣4.2+5.7+(﹣8.7)+4.2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題:(每小題5分,共30分)

1

2

(3)

(4)

(5)解方程:

(6)解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線l:y=(x﹣h)2﹣4(h為常數(shù))
(1)如圖1,當拋物線l恰好經(jīng)過點P(1,﹣4)時,l與x軸從左到右的交點為A、B,與y軸交于點C.

①求l的解析式,并寫出l的對稱軸及頂點坐標.
②在l上是否存在點D,使SABD=SABC , 若存在,請求出D點坐標,若不存在,請說明理由.
③點M是l上任意一點,過點M做ME垂直y軸于點E,交直線BC于點D,過點D作x軸的垂線,垂足為F,連接EF,當線段EF的長度最短時,求出點M的坐標.
(2)設(shè)l與雙曲線y= 有個交點橫坐標為x0 , 且滿足3≤x0≤5,通過l位置隨h變化的過程,直接寫出h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個多面體的展開圖,每個面(外表面)內(nèi)部都標注了字母,請你根據(jù)要求回答問題:

(1)這個多面體是什么常見的幾何體?

(2)如果D是多面體的底部,那么哪一面在上面?

(3)如果B在前面,C在左面,那么哪一面在上面?

(4)如果E在右面,F(xiàn)在后面,那么哪一面在上面?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABCD中,E,F(xiàn)分別是邊AD,BC上的點,且AE=CF,直線EF分別交BA的延長線、DC的延長線于點G,H,交BD于點O.

(1)求證:△ABE≌△CDF;

(2)連接DG,若DG=BG,則四邊形BEDF是什么特殊四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長分別為4和8的兩個正方形ABCD和CEFG并排放在一起,連結(jié)BD并延長交EG于點T,交FG于點P,則GT=(
A.
B.2
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解本校九年級學(xué)生期末數(shù)學(xué)考試情況,小亮在九年級隨機抽取了一部分學(xué)生的期末數(shù)學(xué)成績?yōu)闃颖荆譃锳(100﹣90分)、B(89~80分)、C(79~60分)、D(59~0分)四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答以下問題:
(1)這次隨機抽取的學(xué)生共有多少人?
(2)請補全條形統(tǒng)計圖;
(3)這個學(xué)校九年級共有學(xué)生1200人,若分數(shù)為80分(含80分)以上為優(yōu)秀,請估計這次九年級學(xué)生期末數(shù)學(xué)考試成績?yōu)閮?yōu)秀的學(xué)生人數(shù)大約有多少?

查看答案和解析>>

同步練習(xí)冊答案