如圖,AB切⊙O于點B,OA交⊙O于C點,過C作DC⊥OA交AB于D,且BD:AD=1:2.
(1)求∠A的正切值;
(2)若OC=1,求AB及的長.

【答案】分析:(1)易知DB、DC都是⊙O的切線,由切線長定理可得DB=DC,那么結(jié)合已知條件則有:DC:AD=1:2;即Rt△ACD中,sinA=,由此可求出∠A的度數(shù),進而可的∠A的正切值.
(2)連接OB.在構(gòu)建的含30°角的Rt△OBA中,已知了OB=OC=1,可求出AB的長及∠BOC的度數(shù);進而可根據(jù)弧長公式求出弧BC的長.
解答:解:(1)(方法一)∵DC⊥OA,OC為半徑.
∴DC為⊙O的切線;
∵AB為⊙O的切線,∴DC=DB;
在Rt△ACD中,
∵sinA=,BD:AD=1:2,
∴sinA=;∴∠A=30°,
∴tanA=
(方法二)∵DC⊥OA,OC為半徑.
∴DC為⊙O的切線;
∵AB為⊙O的切線,∴DC=DB;
∵BD:AD=1:2,∴CD:AD=1:2;
∴設(shè)CD=k,AD=2k;
∴AC=k;
∴tanA==

(2)連接OB;
∵AB是⊙O的切線,
∴OB⊥AB.
在Rt△AOB中,
∵tanA=,OB=1;
∴AB=
∵∠A=30°,∴∠O=60°;
的長=
點評:掌握切線的判定方法,綜合運用切線長定理、勾股定理以及銳角三角函數(shù)的概念進行計算;熟悉30°的直角三角形的性質(zhì)以及弧長公式.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,AB切⊙O于點B,OA與⊙O交于點C,點P在⊙O上,若∠BAC=40°,則∠BPC的度數(shù)為(  )
A、20°B、25°C、30°D、40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB切⊙O于點B,OA=2
3
,AB=3,弦BC∥OA,則劣弧BC的弧長為( 。
A、
3
3
π
B、
3
2
π
C、π
D、
3
2
π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB切⊙O于點B,AB=4cm,AO=6cm,則⊙O的半徑為
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•西藏)如圖,AB切⊙O于點B,延長AO交⊙O于點C,連接BC.若∠A=40°,則∠C=(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•廣東模擬)如圖,AB切⊙O于點A,OD⊥弦AC于點D,延長OD,交AB于點B,若∠O=60°,AC=6cm,則AB=
6
6
cm.

查看答案和解析>>

同步練習冊答案