【題目】已知x1=3是關(guān)于x的一元二次方程x2-4x+c=0的一個(gè)根,則方程的另一個(gè)根x2是。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AB=AC=AD,∠DAC=∠ABC.
(1)求證:BD平分∠ABC;
(2)若∠DAC=45°,OA=1,求OC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛小貨車為一家汽車配件批發(fā)部送貨,先向南走了8千米到達(dá)“小崗”修理部,又向北走了4.5千米到達(dá)“明城”修理部,繼續(xù)向北走了6.5千米到達(dá)“中都”修理部,最后又回到批發(fā)部.
(1)請(qǐng)以批發(fā)部為原點(diǎn),向南為正方向,用1個(gè)單位長度表示1千米,在數(shù)軸上表示出“小崗”“明城”“中都”三家修理部的位置;
(2)“中都”修理部距“小崗”修理部有多遠(yuǎn)?
(3)小貨車一共行駛了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為∠MON平分線上一點(diǎn),且OP=,PA⊥ON,垂足為A,B為射線OM上一動(dòng)點(diǎn),若AP=1,PB=,則OB=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,東湖隧道的截面由拋物線和長方形構(gòu)成,長方形的長OA為12cm,寬OB為4cm,隧道頂端D到路面的距離為10cm,建立如圖所示的直角坐標(biāo)系
(1)求該拋物線的解析式.
(2)一輛貨運(yùn)汽車載一長方體集裝箱,集裝箱最高處與地面距離為6m,寬為4m,隧道內(nèi)設(shè)雙向行車道,問這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面高度相等,如果燈離地面的高度不超過8.5m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=+bx+c與x軸交于A(1,0),B(﹣4,0)兩點(diǎn),
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸于C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)設(shè)此拋物線與直線y=﹣x在第二象限交于點(diǎn)D,平行于y軸的直線x=m,()與拋物線交于點(diǎn)M,與直線y=﹣x交于點(diǎn)N,連接BM、CM、NC、NB,是否存在m的值,使四邊形BNCM的面積S最大?若存在,請(qǐng)求出m的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰直角三角形ABC左側(cè)作直線AP,點(diǎn)B關(guān)于直線AP的對(duì)稱點(diǎn)為D,連結(jié)BD、CD,其中CD交直線AP于點(diǎn)E.
(1)依題意補(bǔ)全圖1;
(2)若∠PAB=28°,求∠ACD的度數(shù);
(3)如圖2,若45°<∠PAB <90°,用等式表示線段AB,CE,DE之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y與x+1.5成正比例,且x=2時(shí),y=7.
(1)求y與x之間的函數(shù)表達(dá)式;
(2)若點(diǎn)P(-2,a)在(1)所得的函數(shù)圖象上,求a.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com