【題目】已知x1=3是關(guān)于x的一元二次方程x2-4x+c=0的一個(gè)根,則方程的另一個(gè)根x2

【答案】1
【解析】設(shè)方程的另一個(gè)根是x2 , 則:
3+ x2=4,
解得x2=1,
故另一個(gè)根是1.
故答案為1.
根據(jù)根與系數(shù)的關(guān)系,由兩根之和可以求出方程的另一個(gè)根

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD對(duì)角線AC,BD相交于點(diǎn)O,AB=AC=AD∠DAC=∠ABC

1)求證BD平分∠ABC;

2)若∠DAC=45°,OA=1,OC的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛小貨車為一家汽車配件批發(fā)部送貨,先向南走了8千米到達(dá)“小崗”修理部,又向北走了4.5千米到達(dá)“明城”修理部,繼續(xù)向北走了6.5千米到達(dá)“中都”修理部,最后又回到批發(fā)部.
(1)請(qǐng)以批發(fā)部為原點(diǎn),向南為正方向,用1個(gè)單位長度表示1千米,在數(shù)軸上表示出“小崗”“明城”“中都”三家修理部的位置;
(2)“中都”修理部距“小崗”修理部有多遠(yuǎn)?
(3)小貨車一共行駛了多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為∠MON平分線上一點(diǎn),且OP=,PAON,垂足為A,B為射線OM上一動(dòng)點(diǎn),若AP=1PB=,則OB=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,東湖隧道的截面由拋物線和長方形構(gòu)成,長方形的長OA為12cm,寬OB為4cm,隧道頂端D到路面的距離為10cm,建立如圖所示的直角坐標(biāo)系

(1)求該拋物線的解析式.

(2)一輛貨運(yùn)汽車載一長方體集裝箱,集裝箱最高處與地面距離為6m,寬為4m,隧道內(nèi)設(shè)雙向行車道,問這輛貨車能否安全通過?

(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面高度相等,如果燈離地面的高度不超過8.5m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=+bx+c與x軸交于A(1,0),B(﹣4,0)兩點(diǎn),

(1)求該拋物線的解析式;

(2)設(shè)(1)中的拋物線交y軸于C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得QAC的周長最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)設(shè)此拋物線與直線y=﹣x在第二象限交于點(diǎn)D,平行于y軸的直線x=m,()與拋物線交于點(diǎn)M,與直線y=﹣x交于點(diǎn)N,連接BM、CM、NC、NB,是否存在m的值,使四邊形BNCM的面積S最大?若存在,請(qǐng)求出m的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰直角三角形ABC左側(cè)作直線AP,點(diǎn)B關(guān)于直線AP的對(duì)稱點(diǎn)為D,連結(jié)BD、CD,其中CD交直線AP于點(diǎn)E.

(1)依題意補(bǔ)全圖1;

(2)若∠PAB=28°,求∠ACD的度數(shù);

(3)如圖2,若45°<∠PAB <90°,用等式表示線段AB,CE,DE之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2x+m=0有實(shí)數(shù)根,則m的取值范圍是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知yx+1.5成正比例,且x=2時(shí),y=7

1)求yx之間的函數(shù)表達(dá)式;

2若點(diǎn)P-2a1)所得的函數(shù)圖象上,求a

查看答案和解析>>

同步練習(xí)冊(cè)答案