【題目】在平面直角坐標系中,已知的頂點坐標分別為、、、、.

按下列要求畫圖:以點為位似中心,將軸左側按比例尺放大得的位似圖形,并解決下列問題:

(1)頂點的坐標為 , 的坐標為 , 的坐標為 ;

(2)請你利用旋轉、平移兩種變換,使通過變換后得到,且 恰與拼接成一個平行四邊形 (非正方形).寫出符合要求的變換過程.

【答案】見解析

【解析】試題分析:(1)延長AOA1,使A1O=2AO,延長BOB1,使B1O=2BO,連接CO并延長到C1,使C1O=2CO然后順次連接即可,再根據(jù)平面直角坐標系寫出各點的坐標即可;

2)先繞點O順時針旋轉90°,然后向右平移再向下(或向上)平移使△A2B2C2的直角邊與△DEF的直角邊重合即可.

試題解析:(1)如圖所示,A1B1C1即為所求作的三角形,A1(﹣2,0B1(﹣60C1(﹣4,﹣2);

2)如圖把△A1B1C1繞點O順時針旋轉90°,再向右平移6個單位,向下平移1個單位使B2C2DE重合,或者把△A1B1C1繞點O順時針旋轉90°,再向右平移6個單位,向上平移3個單位,使A2C2EF重合,都可以拼成一個平行四邊形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一個批發(fā)兼零售的文具店規(guī)定:凡一次購買鉛筆300枝以上,(不包括300枝),可以按批發(fā)價付款,購買300枝以下,(包括300枝)只能按零售價付款。小明來該店購買鉛筆,如果給八年級學生每人購買1枝,那么只能按零售價付款,需用120元,如果購買60枝,那么可以按批發(fā)價付款,同樣需要120元,

1) 這個八年級的學生總數(shù)在什么范圍內?

2) 若按批發(fā)價購買6枝與按零售價購買5枝的款相同,那么這個學校八年級學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】商場銷售一款西服和領帶,西服每套定價600元,領帶每條定價80元,商場在黃金周期間開展促銷活動,向顧客提供兩種優(yōu)惠方案:①買一套西服送一條領帶;②西裝和領帶都按定價的90%付款.現(xiàn)某客戶要購買西裝20套,領帶x條(x20).

1)若該客戶按方案①購買,需付款多少元?(用含x的代數(shù)式表示)

2)若該客戶按方案②購買,需付款多少元?(用含x的代數(shù)式表示)

3)若x30,通過計算說明此時按哪種方案購買較為合算?

4)是否存在這樣的x值,兩種付款方式的錢數(shù)一樣多?如存在,請求這出這個值;如不存在,請說明理由?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知(2x1)axbxcxdxexfxg(a,bc,d,e,f,g均為常數(shù)),試求:

(1)abcdefg的值;

(2)abcdefg的值;

(3)aceg的值;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在5×5的方格(每小格邊長為1)內有1只甲蟲A,它爬行規(guī)律總是先左右,再上下.規(guī)定:向右與向上為正,向左與向下為負.從AB的爬行路線記為:AB+1+4),從BA的爬行路線為:BA(﹣1,﹣4),其中第一個數(shù)表示左右爬行信息,第二個數(shù)表示上下爬行信息.

1)圖中BD      ),C   +1,   );

2)若甲蟲A的爬行路線為ABCD,計算甲蟲A爬行的路程?

3)若甲蟲A的爬行路線依次為(+2,+3),(﹣2+1),(+3,﹣5),(﹣4,+2),最終到達點P處,請在圖中標出甲蟲A的爬行路線示意圖及最終點P的位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kx+b經(jīng)過點A-5,0),B-1,4

1)求直線AB的表達式;

2)求直線CEy=-2x-4與直線ABy軸圍成圖形的面積;

3)根據(jù)圖象,直接寫出關于x的不等式kx+b-2x-4的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩名同學做摸球游戲,他們把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中.

1)求從袋中隨機摸出一球,標號是1的概率;

2)從袋中隨機摸出一球后放回,搖勻后再隨機摸出一球,若兩次摸出的球的標號之和為偶數(shù)時,則甲勝;若兩次摸出的球的標號之和為奇數(shù)時,則乙勝;試分析這個游戲是否公平?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點P(1,﹣4)、Q(m,n)在函數(shù)(x>0)的圖象上,當m>1時,過點P分別作x軸、y軸的垂線,垂足為點A,B;過點Q分別作x軸、y軸的垂線,垂足為點C、D.QD交PA于點E,隨著m的增大,四邊形ACQE的面積(

A.減小 B.增大 C.先減小后增大 D.先增大后減小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(126+3;

2)()(+)+(232;

用指定方法解下列一元二次方程:

3x236=0(直接開平方法);

4x24x=2(配方法);

52x25x+1=0(公式法);

6)(x+12+8x+1)+16=0(因式分解法)

查看答案和解析>>

同步練習冊答案