在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙OAB于點(diǎn)D.

(1)求線(xiàn)段AD的長(zhǎng)度;
(2)點(diǎn)E是線(xiàn)段AC上的一點(diǎn),試問(wèn)當(dāng)點(diǎn)E在什么位置時(shí),直線(xiàn)ED與⊙O相切?請(qǐng)說(shuō)明理由.

(1)(2)在AC的中點(diǎn)時(shí)

解析試題分析:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm.     1分
連結(jié)CD,∵BC為直徑,∴∠ADC =∠BDC =90°.
∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽R(shí)t△ACB
,∴.                                4分
(2)當(dāng)點(diǎn)EAC的中點(diǎn)時(shí),ED與⊙O相切.                 5分
證明:連結(jié)OD,∵DE是Rt△ADC的中線(xiàn).

ED=EC,∴∠EDC=∠ECD
OC=OD,∴∠ODC =∠OCD.                                        7分
∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD =∠ACB =90°.
ED與⊙O相切.                     
考點(diǎn):圓的切線(xiàn)
點(diǎn)評(píng):本題屬于對(duì)圓的切線(xiàn)等基本性質(zhì)的熟練掌握

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙O交AB于點(diǎn)D.
(1)求線(xiàn)段AD的長(zhǎng)度;
(2)點(diǎn)E是線(xiàn)段AC上的一點(diǎn),試問(wèn)當(dāng)點(diǎn)E在什么位置時(shí),直線(xiàn)ED與⊙O相切?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖州)如圖,已知在Rt△ACB中,∠C=90°,AB=13,AC=12,則cosB的值為
5
13
5
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•青銅峽市模擬)已知:如圖①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ.若設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2),解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),PQ∥BC?
(2)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)如圖②,連接PC,并把△PQC沿QC翻折,得到四邊形PQP′C,那么是否存在某一時(shí)刻t,使四邊形PQP′C為菱形?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•丹東一模)在Rt△ACB中,∠C=90°,AC=BC,一直角三角板的直角頂角O在AB邊的中點(diǎn)上,這塊三角板繞O點(diǎn)旋轉(zhuǎn),兩條直角邊始終與AC、BC邊分別相交于E、F,連接EF,則在運(yùn)動(dòng)過(guò)程中,△OEF與△ABC的關(guān)系是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在Rt△ACB中,∠C=90°,AD平分∠BAC,若BC=16,BD=10,則點(diǎn)D到AB的距離是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案