【題目】在中,
,點(diǎn)
在直線
上,
,點(diǎn)
為
邊的中點(diǎn),連接
,射線
交
于點(diǎn)
,則
的值為________.
【答案】或
【解析】
分兩種情況討論:①當(dāng)D在線段BC上時(shí),如圖1,過D作DH∥CE交AB于H.②當(dāng)D在線段CB延長(zhǎng)線上時(shí),如圖2,過B作BH∥CE交AD于H.利用平行線分線段成比例定理解答即可.
分兩種情況討論:
①當(dāng)D在線段BC上時(shí),如圖1,過D作DH∥CE交AB于H.
∵DH∥CE,
∴.
設(shè)BH=x,則HE=3x,
∴BE=4x.
∵E是AB的中點(diǎn),
∴AE=BE=4x.
∵EM∥HD,
∴.
②當(dāng)D在線段CB延長(zhǎng)線上時(shí),如圖2,過B作BH∥CE交AD于H.
∵DC=3DB,
∴BC=2DB.
∵BH∥CE,
∴.
設(shè)DH=x,則HM=2x.
∵E是AB的中點(diǎn),EM∥BH,
∴,
∴AM=MH=2x,
∴.
綜上所述:的值為
或
.
故答案為:或
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面坐標(biāo)系中,正方形的位置如圖所示,點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
,延長(zhǎng)
交
軸于點(diǎn)
,作正方形
,正方形
的面積為______,延長(zhǎng)
交
軸于點(diǎn)
,作正方形
,……按這樣的規(guī)律進(jìn)行下去,正方形
的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,C,D,B在以O點(diǎn)為圓心,OA長(zhǎng)為半徑的圓弧上, AC=CD=DB,AB交OC于點(diǎn)E.求證:AE=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一元二次方程mx2-2mx+m-2=0.
(1)若方程有兩個(gè)不等實(shí)數(shù)根,求m的取值范圍;
(2)若方程的兩實(shí)數(shù)根為x1,x2,且|x1-x2|=1,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AM為BC邊的中線,點(diǎn)D在邊AC上,聯(lián)結(jié)BD交AM于點(diǎn)F,延長(zhǎng)BD至點(diǎn)E,使得=
,聯(lián)結(jié)CE.
求證:(1)∠ECD=2∠BAM;
(2)BF是DF和EF的比例中項(xiàng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形為
的內(nèi)接四邊形,直徑
與對(duì)角線
相交于點(diǎn)
,作
于
,
與過
點(diǎn)的直線相交于點(diǎn)
,
.
(1)求證:為
的切線;
(2)若平分
,求證:
;
(3)在(2)的條件下,為
的中點(diǎn),連接
,若
,
的半徑為
,求
的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,雨后初睛,李老師在公園散步,看見積水水面上出現(xiàn)階梯上方樹的倒影,于是想利用倒影與物體的對(duì)稱性測(cè)量這顆樹的高度,他的方法是:測(cè)得樹頂?shù)难鼋恰?/span>1、測(cè)量點(diǎn)A到水面平臺(tái)的垂直高度AB、看到倒影頂端的視線與水面交點(diǎn)C到AB的水平距離BC.再測(cè)得梯步斜坡的坡角∠2和長(zhǎng)度EF,根據(jù)以下數(shù)據(jù)進(jìn)行計(jì)算,如圖,AB=2米,BC=1米,EF=4米,∠1=60°,∠2=45°.已知線段ON和線段OD關(guān)于直線OB對(duì)稱.(以下結(jié)果保留根號(hào))
(1)求梯步的高度MO;
(2)求樹高MN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD外側(cè)作直線AP,點(diǎn)B關(guān)于直線AP的對(duì)稱點(diǎn)為E,連接BE,DE,其中DE交直線AP于點(diǎn)F.
(1)依題意補(bǔ)全圖1;
(2)若∠PAB=20°,求∠ADF的度數(shù);
(3)如圖2,若45°<∠PAB<90°,用等式表示線段AB,FE,FD之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過點(diǎn)A(4,1)的直線與反比例函數(shù)y=的圖象交于點(diǎn)A、C,AB⊥y軸,垂足為B,連接BC.
(1)求反比例函數(shù)的表達(dá)式;
(2)若△ABC的面積為6,求直線AC的函數(shù)表達(dá)式;
(3)在(2)的條件下,點(diǎn)P在雙曲線位于第一象限的圖象上,若∠PAC=90°,則點(diǎn)P的坐標(biāo)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com