【題目】如圖,△ABC中,ABAC,AMBC邊的中線,點D在邊AC上,聯(lián)結BDAM于點F,延長BD至點E,使得,聯(lián)結CE

求證:(1)∠ECD2BAM;

2BFDFEF的比例中項.

【答案】1)詳見解析;(2)詳見解析.

【解析】

1)由等腰三角形的性質可得∠BAC2BAM,通過證明△ADB∽△CDE,可得∠BAC=∠ECD2BAM

2)由等腰三角形的性質可得BFCF,通過證明△DCF∽△CEF,可得,可得結論.

證明:(1)∵ABAC,AMBC邊的中線,

∴∠BAC2BAM,

,∠ADB=∠CDE,

∴△ADB∽△CDE,

∴∠BAC=∠ECD,

∴∠ECD2BAM;

2)如圖,連接CF,

ABAC,AMBC邊的中線,

AMBC的垂直平分線,

BFCF,且ABACAFAF,

∵△ABF≌△ACFSSS

∴∠ABF=∠ACF

由(1)可知:△ADB∽△CDE,

∴∠ABF=∠E,

∴∠ACF=∠E,且∠EFC=∠DFC,

∴△DCF∽△CEF,

,且BFCF,

BF2DFEF,

BFDFEF的比例中項.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的布袋里裝有個標號分別為的小球,這些球除標號外無其它差別.從布袋里隨機取出一個小球,記下標號為,再從剩下的個小球中隨機取出一個小球,記下標號為記點的坐標為

(1)請用畫樹形圖或列表的方法寫出點所有可能的坐標;

(2)求兩次取出的小球標號之和大于的概率;

(3)求點落在直線上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=﹣x+3的圖象與反比例函數(shù)yx0k是常數(shù))的圖象交于Aa,2),B4b)兩點.

1)求反比例函數(shù)的表達式;

2)點C是第一象限內一點,連接AC,BC,使ACx軸,BCy軸,連接OA,OB.若點Py軸上,且OPA的面積與四邊形OACB的面積相等,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內接于⊙O,∠ABC BAC的平分線交于點E,延長AE分別交BC, O于點F, D,連接BD.

(1)求證: BD=DE.

(2)BD=6,AD=10,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點A(-3,2),B(0,-2)其對稱軸為直線x= ,C(0, )y軸上一點,直線AC與拋物線交于另一點D,

1)求拋物線的解析式;

2)在拋物線的對稱軸上是否存在點F使ADF是直角三角形,如果存在,求出點F的坐標,如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,點在直線上,,點邊的中點,連接,射線于點,則的值為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊AB=20,面積為320,BAD<90°,O與邊AB,AD都相切,AO=10,則O的半徑長等于(

A.5 B.6 C.2 D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小蕓設計的過圓外一點作已知圓的切線的尺規(guī)作圖過程.

已知:⊙O及⊙O外一點P

求作:⊙O的一條切線,使這條切線經(jīng)過點P

作法:①連接OP,作OP的垂直平分線l,交OP于點A;

②以A為圓心,AO為半徑作圓,交⊙O于點M;

③作直線PM,則直線PM即為⊙O的切線.

根據(jù)小蕓設計的尺規(guī)作圖過程,

1)用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

2)完成證明:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,對稱軸為直線x=1的拋物線y=x2﹣bx+cx軸交于A(x1,0)、B(x2,0)(x1<x2)兩點,與y軸交于C點,且+=﹣

(1)求拋物線的解析式;

(2)拋物線頂點為D,直線BDy軸于E點;

①設點P為線段BD上一點(點P不與B、D兩點重合),過點Px軸的垂線與拋物線交于點F,求BDF面積的最大值;

②在線段BD上是否存在點Q,使得∠BDC=QCE?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案