【題目】如圖,△ABC中,AB=AC,AM為BC邊的中線,點(diǎn)D在邊AC上,聯(lián)結(jié)BD交AM于點(diǎn)F,延長BD至點(diǎn)E,使得=,聯(lián)結(jié)CE.
求證:(1)∠ECD=2∠BAM;
(2)BF是DF和EF的比例中項(xiàng).
【答案】(1)詳見解析;(2)詳見解析.
【解析】
(1)由等腰三角形的性質(zhì)可得∠BAC=2∠BAM,通過證明△ADB∽△CDE,可得∠BAC=∠ECD=2∠BAM;
(2)由等腰三角形的性質(zhì)可得BF=CF,通過證明△DCF∽△CEF,可得,可得結(jié)論.
證明:(1)∵AB=AC,AM為BC邊的中線,
∴∠BAC=2∠BAM,
∵=,∠ADB=∠CDE,
∴△ADB∽△CDE,
∴∠BAC=∠ECD,
∴∠ECD=2∠BAM;
(2)如圖,連接CF,
∵AB=AC,AM為BC邊的中線,
∴AM是BC的垂直平分線,
∴BF=CF,且AB=AC,AF=AF,
∵△ABF≌△ACF(SSS)
∴∠ABF=∠ACF,
由(1)可知:△ADB∽△CDE,
∴∠ABF=∠E,
∴∠ACF=∠E,且∠EFC=∠DFC,
∴△DCF∽△CEF,
∴,且BF=CF,
∴BF2=DFEF,
∴BF是DF和EF的比例中項(xiàng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的布袋里裝有個標(biāo)號分別為的小球,這些球除標(biāo)號外無其它差別.從布袋里隨機(jī)取出一個小球,記下標(biāo)號為,再從剩下的個小球中隨機(jī)取出一個小球,記下標(biāo)號為記點(diǎn)的坐標(biāo)為.
(1)請用畫樹形圖或列表的方法寫出點(diǎn)所有可能的坐標(biāo);
(2)求兩次取出的小球標(biāo)號之和大于的概率;
(3)求點(diǎn)落在直線上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+3的圖象與反比例函數(shù)y=(x>0,k是常數(shù))的圖象交于A(a,2),B(4,b)兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式;
(2)點(diǎn)C是第一象限內(nèi)一點(diǎn),連接AC,BC,使AC∥x軸,BC∥y軸,連接OA,OB.若點(diǎn)P在y軸上,且△OPA的面積與四邊形OACB的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠ABC和 ∠BAC的平分線交于點(diǎn)E,延長AE分別交BC, ⊙O于點(diǎn)F, D,連接BD.
(1)求證: BD=DE.
(2)若BD=6,AD=10,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)A(-3,2),B(0,-2)其對稱軸為直線x= ,C(0, )為y軸上一點(diǎn),直線AC與拋物線交于另一點(diǎn)D,
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點(diǎn)F使△ADF是直角三角形,如果存在,求出點(diǎn)F的坐標(biāo),如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,點(diǎn)在直線上,,點(diǎn)為邊的中點(diǎn),連接,射線交于點(diǎn),則的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊AB=20,面積為320,∠BAD<90°,⊙O與邊AB,AD都相切,AO=10,則⊙O的半徑長等于( )
A.5 B.6 C.2 D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小蕓設(shè)計(jì)的“過圓外一點(diǎn)作已知圓的切線”的尺規(guī)作圖過程.
已知:⊙O及⊙O外一點(diǎn)P.
求作:⊙O的一條切線,使這條切線經(jīng)過點(diǎn)P.
作法:①連接OP,作OP的垂直平分線l,交OP于點(diǎn)A;
②以A為圓心,AO為半徑作圓,交⊙O于點(diǎn)M;
③作直線PM,則直線PM即為⊙O的切線.
根據(jù)小蕓設(shè)計(jì)的尺規(guī)作圖過程,
(1)用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對稱軸為直線x=1的拋物線y=x2﹣bx+c與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點(diǎn),與y軸交于C點(diǎn),且+=﹣.
(1)求拋物線的解析式;
(2)拋物線頂點(diǎn)為D,直線BD交y軸于E點(diǎn);
①設(shè)點(diǎn)P為線段BD上一點(diǎn)(點(diǎn)P不與B、D兩點(diǎn)重合),過點(diǎn)P作x軸的垂線與拋物線交于點(diǎn)F,求△BDF面積的最大值;
②在線段BD上是否存在點(diǎn)Q,使得∠BDC=∠QCE?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com