(2004•太原)寫出以-1,2為根的一元二次方程   
【答案】分析:先求出-1+2及(-1)×2的值,再根據(jù)一元二次方程根與系數(shù)的關(guān)系構(gòu)造出方程即可.
解答:解:∵-1+2=1,(-1)×2=-2,
∴以-1,2為根的一元二次方程可以是x2-x-2=0(答案不唯一).
故答案為:x2-x-2=0(答案不唯一).
點(diǎn)評:本題考查的是一元二次方程根與系數(shù)的關(guān)系,屬開放性題目,答案不唯一,只要熟知一元二次方程根與系數(shù)的關(guān)系即可解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

(2004•太原)已知:如圖,在△ABC中,∠B=90度.O是BA上一點(diǎn),以O(shè)為圓心、OB為半徑的圓與AB交于點(diǎn)E,與AC切于點(diǎn)D,AD=2,AE=1.設(shè)P是線段BA上的動點(diǎn)(P與A、B不重合),BP=x.
(1)求BE的長;
(2)求x為何值時,以P、A、D為頂點(diǎn)的三角形是等腰三角形;
(3)在點(diǎn)P的運(yùn)動過程中,PD與△PBC的外接圓能否相切?若能,請證明;若不能,請說明理由;
(4)請?jiān)偬岢鲆粋與動點(diǎn)P有關(guān)的數(shù)學(xué)問題,并直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學(xué)試卷(高橋初中2 鐘玲芳)(解析版) 題型:解答題

(2004•太原)已知:如圖△ABC中,高AD和BE相交于點(diǎn)H,且HA=HC.
(1)求證:∠1=∠2;
(2)用直尺和圓規(guī)畫出經(jīng)過B、H、C三點(diǎn)的⊙O(不寫畫法);
(3)證明EC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學(xué)試卷(高橋初中 莊璐)(解析版) 題型:解答題

(2004•太原)已知:如圖△ABC中,高AD和BE相交于點(diǎn)H,且HA=HC.
(1)求證:∠1=∠2;
(2)用直尺和圓規(guī)畫出經(jīng)過B、H、C三點(diǎn)的⊙O(不寫畫法);
(3)證明EC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年山西省太原市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•太原)如圖所示,若將類似于a、b、c、d四個圖的圖形稱做平面圖,則其頂點(diǎn)數(shù)、邊數(shù)與區(qū)域數(shù)之間存在某種關(guān)系.觀察圖b和表中對應(yīng)的數(shù)值,探究計(jì)數(shù)的方法并作答.
(1)數(shù)一數(shù)每個圖中各有多少個頂點(diǎn)、多少條邊,這些邊圍出多少個區(qū)域并填表:
圖  a c d
 頂點(diǎn)數(shù)(S)  7  
 邊數(shù)(M)  9  
 區(qū)域數(shù)(N)  3  
(2)根據(jù)表中數(shù)值,寫出平面圖的頂點(diǎn)數(shù)、邊數(shù)、區(qū)域數(shù)之間的一種關(guān)系;
(3)如果一個平面圖有20個頂點(diǎn)和11個區(qū)域,那么利用(2)中得出的關(guān)系可知這個平面圖有______條邊.

查看答案和解析>>

同步練習(xí)冊答案