如圖,在圖1所示的正方形鐵皮上剪下一個(gè)圓形和扇形,使之恰好圍成圖2所示的一個(gè)圓錐模型.設(shè)圓的半徑為r,扇形的半徑為R,則圓的半徑與扇形的半徑之間的關(guān)系為( )

A.R=2r
B.R=r
C.R=3r
D.R=4r
【答案】分析:根據(jù)弧長(zhǎng)公式計(jì)算.
解答:解:因?yàn)樯刃蔚幕¢L(zhǎng)等于圓錐底面周長(zhǎng),
所以×2πR=2πr,
化簡(jiǎn)得R=4r.
故選D.
點(diǎn)評(píng):圓錐的側(cè)面展開(kāi)圖是一個(gè)扇形,此扇形的弧長(zhǎng)等于圓錐底面周長(zhǎng),扇形的半徑等于圓錐的母線(xiàn)長(zhǎng).本題就是把的扇形的弧長(zhǎng)等于圓錐底面周長(zhǎng)作為相等關(guān)系,列方程求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

為響應(yīng)薄熙來(lái)書(shū)記建設(shè)“森林重慶”的號(hào)召,某園藝公司從2010年9月開(kāi)始積極進(jìn)行植樹(shù)造林.該公司第x月種植樹(shù)木的畝數(shù)y(畝)與x之間滿(mǎn)足y=x+4,(其中x從9月算起,即9月時(shí)x=1,10月時(shí)x=2,…,且1≤x≤6,x為正整數(shù)).由于植樹(shù)規(guī)模擴(kuò)大,每畝的收益P(千元)與種植樹(shù)木畝數(shù)y(畝)之間存在如圖(25題圖)所示的變化趨勢(shì).
(1)根據(jù)如圖所示的變化趨勢(shì),直接寫(xiě)出P與y之間所滿(mǎn)足的函數(shù)關(guān)系表達(dá)式;
(2)行動(dòng)實(shí)施六個(gè)月來(lái),求該每月收益w(千元)與月份x之間的函數(shù)關(guān)系式,并求x為何值時(shí)總收益最大?此時(shí)每畝收益為多少?
(3)進(jìn)入植樹(shù)造林的第七個(gè)月,政府出臺(tái)了一項(xiàng)激勵(lì)措施:在“植樹(shù)造林”過(guò)程中,每月植樹(shù)面積與第六個(gè)月植樹(shù)面積相同的部分,按第六月每畝收益進(jìn)行結(jié)算;超出第六月植樹(shù)面積的部分,每畝收益將按第六月時(shí)每畝的收益再增加0.6m%進(jìn)行結(jié)算.這樣,該公司第七月植樹(shù)面積比第六月增加了m%.另外,第七月時(shí)公司需對(duì)前六個(gè)月種植的所有樹(shù)木進(jìn)行保養(yǎng),除去成本后政府給予每畝4m%千元的保養(yǎng)補(bǔ)貼.最后,該公司第七個(gè)月獲得種植樹(shù)木的收益和政府保養(yǎng)補(bǔ)貼共702千元.請(qǐng)通過(guò)計(jì)算,估算出m的整數(shù)值.(參考數(shù)據(jù):422=1764,432=1849,442=1936).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

將連續(xù)的奇數(shù)1,3,5,7,…,排成如下圖的數(shù)表,用圖中所示的十字框可任意框出5個(gè)數(shù).
【探究規(guī)律一】:設(shè)十字框中間的奇數(shù)為a,則框中五個(gè)奇數(shù)之和用含a的代數(shù)式表示為
5a
5a

【結(jié)論】:這說(shuō)明能被十字框框中的五個(gè)奇數(shù)之和一定是自然數(shù)p的奇數(shù)倍,這個(gè)自然數(shù)p是
5
5

【探究規(guī)律二】:落在十字框中間且又是第二列的奇數(shù)是15,27,39,51…則這一列數(shù)可以用代數(shù)式表示為12m+3(m為正整數(shù)),同樣,落在十字框中間且又是第三列,第四列的奇數(shù)分別可表示為
12m+5,13m+7
12m+5,13m+7

【運(yùn)用規(guī)律】:
(1)已知被十字框框中的五個(gè)奇數(shù)之和為6025,則十字框中間的奇數(shù)是
1025
1025
;這個(gè)奇數(shù)落在從左往右第
3
3
列.
(2)被十字框框中的五個(gè)奇數(shù)之和可能是485嗎?可能是3045嗎?說(shuō)說(shuō)你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(四川綿陽(yáng)卷)數(shù)學(xué)(帶解析) 題型:解答題

如圖1,在直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A在y軸正半軸上,二次函數(shù)y=ax2+x +c的圖象F交x軸于B、C兩點(diǎn),交y軸于M點(diǎn),其中B(-3,0),M(0,-1)。已知AM=BC。
(1)求二次函數(shù)的解析式;
(2)證明:在拋物線(xiàn)F上存在點(diǎn)D,使A、B、C、D四點(diǎn)連接而成的四邊形恰好是平行四邊形,并請(qǐng)求出直線(xiàn)BD的解析式;
(3)在(2)的條件下,設(shè)直線(xiàn)l過(guò)D且分別交直線(xiàn)BA、BC于不同的P、Q兩點(diǎn),AC、BD相交于N。
①若直線(xiàn)l⊥BD,如圖1所示,試求的值;
②若l為滿(mǎn)足條件的任意直線(xiàn)。如圖2所示,①中的結(jié)論還成立嗎?若成立,證明你的猜想;若不成立,請(qǐng)舉出反例。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(四川綿陽(yáng)卷)數(shù)學(xué)(解析版) 題型:解答題

如圖1,在直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A在y軸正半軸上,二次函數(shù)y=ax2+x +c的圖象F交x軸于B、C兩點(diǎn),交y軸于M點(diǎn),其中B(-3,0),M(0,-1)。已知AM=BC。

(1)求二次函數(shù)的解析式;

(2)證明:在拋物線(xiàn)F上存在點(diǎn)D,使A、B、C、D四點(diǎn)連接而成的四邊形恰好是平行四邊形,并請(qǐng)求出直線(xiàn)BD的解析式;

(3)在(2)的條件下,設(shè)直線(xiàn)l過(guò)D且分別交直線(xiàn)BA、BC于不同的P、Q兩點(diǎn),AC、BD相交于N。

①若直線(xiàn)l⊥BD,如圖1所示,試求的值;

②若l為滿(mǎn)足條件的任意直線(xiàn)。如圖2所示,①中的結(jié)論還成立嗎?若成立,證明你的猜想;若不成立,請(qǐng)舉出反例。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012年江蘇省張家港市九年級(jí)第一學(xué)期調(diào)研試卷數(shù)學(xué)卷 題型:解答題

(本題3分+3分+4分)施工隊(duì)要修建一個(gè)橫斷面為拋物線(xiàn)的公路隧道,其高度為6米,寬度OM為12米.現(xiàn)以O(shè)點(diǎn)為原點(diǎn),OM所在直線(xiàn)為x軸建立直角坐標(biāo)系(如圖1所示).

⑴求出這條拋物線(xiàn)的函數(shù)解析式,并寫(xiě)出自變量x的取值范圍;

⑵隧道下的公路是雙向行車(chē)道(正中間是一條寬1米的隔離帶),其中的一條行車(chē)道能否行駛寬2.5米、高5米的特種車(chē)輛?請(qǐng)通過(guò)計(jì)算說(shuō)明;

⑶施工隊(duì)計(jì)劃在隧道門(mén)口搭建一個(gè)矩形“腳手架”CDAB,使A、D點(diǎn)在拋物線(xiàn)上。B、C點(diǎn)在地面OM線(xiàn)上(如圖2所示).為了籌備材料,需求出“腳手架”三根木桿AB、AD、DC的長(zhǎng)度之和的最大值是多少,請(qǐng)你幫施工隊(duì)計(jì)算一下.

 

 

 

 

 

 

圖2

 
 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案