【題目】如圖①,在矩形中,,對(duì)角線相交于點(diǎn),動(dòng)點(diǎn)由點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動(dòng).設(shè)點(diǎn)的運(yùn)動(dòng)路程為,的面積為,與的函數(shù)關(guān)系圖象如圖②所示,則邊的長(zhǎng)為( ).
A. 3B. 4C. 5D. 6
【答案】B
【解析】
當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí),面積逐漸增大,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),結(jié)合圖象可得面積最大為3,得到與的積為12;當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí),面積逐漸減小,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),面積為0,此時(shí)結(jié)合圖象可知點(diǎn)運(yùn)動(dòng)路徑長(zhǎng)為7,得到與的和為7,構(gòu)造關(guān)于的一元二方程可求解.
解:當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí),面積逐漸增大,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),面積最大為3.
∴,即.
當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí),面積逐漸減小,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),面積為0,此時(shí)結(jié)合圖象可知點(diǎn)運(yùn)動(dòng)路徑長(zhǎng)為7,
∴.
則,代入,得,解得或3,
因?yàn)?/span>,即,
所以.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明早上勻速騎車去上學(xué),出發(fā)幾分鐘后,爸爸發(fā)現(xiàn)小明的作業(yè)本丟在家里,趕緊勻速騎車去追.爸爸剛出發(fā)時(shí),小明也發(fā)現(xiàn)作業(yè)本丟在家里,立刻按原路原速返回, 后遇到爸爸,爸爸把作業(yè)本交給小明后立刻按原路原速返回家,小明繼續(xù)按原速騎車趕往學(xué)校.小明和爸爸相距的路程與小明出發(fā)的時(shí)間之間的關(guān)系如圖所示(爸爸給小明作業(yè)本的時(shí)間忽略不計(jì)).下列說法中,錯(cuò)誤的是( )
A.小明的騎車速度為B.爸爸騎車的速度是小明的倍
C.點(diǎn)坐標(biāo)為D.爸爸返回家時(shí),小明共騎行了
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=ax2+bx+c與y軸交于點(diǎn)A(0,6),與x軸交于點(diǎn)B(﹣2,0),C(6,0).
(1)直接寫出拋物線的解析式及其對(duì)稱軸;
(2)如圖2,連接AB,AC,設(shè)點(diǎn)P(m,n)是拋物線上位于第一象限內(nèi)的一動(dòng)點(diǎn),且在對(duì)稱軸右側(cè),過點(diǎn)P作PD⊥AC于點(diǎn)E,交x軸于點(diǎn)D,過點(diǎn)P作PG∥AB交AC于點(diǎn)F,交x軸于點(diǎn)G.設(shè)線段DG的長(zhǎng)為d,求d與m的函數(shù)關(guān)系式,并注明m的取值范圍;
(3)在(2)的條件下,若△PDG的面積為,
①求點(diǎn)P的坐標(biāo);
②設(shè)M為直線AP上一動(dòng)點(diǎn),連接OM交直線AC于點(diǎn)S,則點(diǎn)M在運(yùn)動(dòng)過程中,在拋物線上是否存在點(diǎn)R,使得△ARS為等腰直角三角形?若存在,請(qǐng)直接寫出點(diǎn)M及其對(duì)應(yīng)的點(diǎn)R的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了推動(dòng)全社會(huì)自覺尊法學(xué)法守法用法,促進(jìn)全面依法治國,某區(qū)每年都舉辦普法知識(shí)競(jìng)賽,該區(qū)某單位甲、乙兩個(gè)部門各有員工200人,要在這兩個(gè)部門中挑選一個(gè)部門代表單位參加今年的競(jìng)賽,為了解這兩個(gè)部門員工對(duì)法律知識(shí)的掌握情況,進(jìn)行了抽樣調(diào)查,從甲、乙兩個(gè)部門各隨機(jī)抽取20名員工,進(jìn)行了法律知識(shí)測(cè)試,獲得了他們的成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行整理,描述和分析,下面給出了部分信息.
a.甲部門成績(jī)的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)
b.乙部門成績(jī)?nèi)缦拢?/span>
40 52 70 70 71 73 77 78 80 81
82 82 82 82 83 83 83 86 91 94
c.甲、乙兩部門成績(jī)的平均數(shù)、方差、中位數(shù)如下:
平均數(shù) | 方差 | 中位數(shù) | |
甲 | 79.6 | 36.84 | 78.5 |
乙 | 77 | 147.2 | m |
d.近五年該單位參賽員工進(jìn)入復(fù)賽的出線成績(jī)?nèi)缦拢?/span>
2014年 | 2015年 | 2016年 | 2017年 | 2018年 | |
出線成績(jī)(百分制) | 79 | 81 | 80 | 81 | 82 |
根據(jù)以上信息,回答下列問題:
(1)寫出表中m的值;
(2)可以推斷出選擇 部門參賽更好,理由為 ;
(3)預(yù)估(2)中部門今年參賽進(jìn)入復(fù)賽的人數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O為△ABC的外接圓,直線MN與⊙O相切于點(diǎn)C,弦BD∥MN,AC與BD相交于點(diǎn)E.
(1)求證:∠CAB=∠CBD;
(2)若BC=5,BD =8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉辦學(xué)生綜合素質(zhì)大賽,分“單人項(xiàng)目”和“雙人項(xiàng)目”兩種形式,比賽題目包括下列五類:.人文藝術(shù);.歷史社會(huì);.自然科學(xué);.天文地理;.體育健康.
(1)若小明參加“單人項(xiàng)目”,他從中抽取一個(gè)題目,那么恰好抽中“自然科學(xué)”類題目的概率為_____.
(2)小林和小麗參加“雙人項(xiàng)目”,比賽規(guī)定:同一小組的兩名同學(xué)的題目類型不能相同,且每人只能抽取一次,求他們抽到“天文地理”和“體育健康”類題目的概率是多少?(用畫樹狀圖或列表的方法求解).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“切實(shí)減輕學(xué)生課業(yè)負(fù)擔(dān)”是我市作業(yè)改革的一項(xiàng)重要舉措.某中學(xué)為了了解本校學(xué)生平均每天的課外作業(yè)時(shí)間,隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果分為A,B,C,D四個(gè)等級(jí),A:1小時(shí)以內(nèi);B:1小時(shí)~1.5小時(shí);C:1.5小時(shí)~2小時(shí);D:2小時(shí)以上(各邊界值忽略不計(jì)).根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答下列問題:
(1)該校共調(diào)查了 名學(xué)生;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)表示等級(jí)A的扇形圓心角的度數(shù)是 ;
(4)若該學(xué)校在校學(xué)生人數(shù)共2000人,問做課外作業(yè)時(shí)間在1.5小時(shí)~2小時(shí)的學(xué)生人數(shù)大約有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)10元/件,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于16元/件,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(件與銷售價(jià)(元/件)之間的函數(shù)關(guān)系如圖所示.
(1)求與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)求每天的銷售利潤(rùn)W(元與銷售價(jià)(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的斜邊在軸上,邊與軸交于點(diǎn),平分交邊于點(diǎn),經(jīng)過點(diǎn)的圓的圓心恰好在軸上,⊙與里面相交于另一點(diǎn).
(1)求證:是⊙的切線 ;
(2)若點(diǎn)的坐標(biāo)分別為,求⊙的半徑及線段的長(zhǎng);
(3)試探究線段三者之間滿足的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com