拋物線y=ax2與直線y=3x+b只有一個(gè)公共點(diǎn),則b=   
【答案】分析:拋物線y=ax2與直線y=3x+b只有一個(gè)公共點(diǎn),即ax2=3x+b只有一個(gè)解,然后根據(jù)△=0確定b的值.
解答:解:∵拋物線y=ax2與直線y=3x+b只有一個(gè)公共點(diǎn),
∴ax2=3x+b只有一個(gè)解,
即ax2-3x-b=0只有一個(gè)解,
∴△=9+4ab=0.
解得b=-
點(diǎn)評(píng):兩函數(shù)圖象的交點(diǎn)就是兩函數(shù)解析式聯(lián)立成方程組后的解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,平面直角坐標(biāo)系中,拋物線y=ax2+bx+c經(jīng)過A(0,4)、B(-2,0)、C(6,0).過點(diǎn)AADx軸交拋物線于點(diǎn)D,過點(diǎn)DDEx軸,垂足為點(diǎn)E點(diǎn)M是四邊形OADE的對(duì)角線的交點(diǎn),點(diǎn)Fy軸負(fù)半軸上,且F(0,-2).

(1)求拋物線的解析式,并直接寫出四邊形OADE的形狀;

(2)當(dāng)點(diǎn)PQC、F兩點(diǎn)同時(shí)出發(fā),均以每秒1個(gè)長(zhǎng)度單位的速度沿CB、FA方向

運(yùn)動(dòng),點(diǎn)P運(yùn)動(dòng)到O時(shí)P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,在運(yùn)動(dòng)過

程中,以P、Q、O、M四點(diǎn)為頂點(diǎn)的四邊形的面積為S,求出St之間的函數(shù)關(guān)

系式,并寫出自變量的取值范圍;

(3)在拋物線上是否存在點(diǎn)N,使以B、C、F、N為頂點(diǎn)的四邊形是梯形?若存在,直

接寫出點(diǎn)N的坐標(biāo);不存在,說明理由。

 


第23題圖(1)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案