【題目】按要求解答:
(1)計(jì)算: ;
(2)因式分解: ;
(3)先化簡(jiǎn),再求值: ,其中 .
【答案】
(1)
(2)
解:a2-ab
=a(a-b)
(3)
解:(x+2)2-x(x-2)
由 得,原式
【解析】(1)根據(jù)零指數(shù)次冪和負(fù)整數(shù)次冪計(jì)算;
(2)利用提公因式法分解因式,注意檢查分解到不能再分解為止;
(3)利用完全平方公式和整式的混合運(yùn)算化簡(jiǎn)求值即可.
【考點(diǎn)精析】通過靈活運(yùn)用零指數(shù)冪法則和整數(shù)指數(shù)冪的運(yùn)算性質(zhì),掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB,按下列要求完成畫圖和計(jì)算:
(1)延長(zhǎng)線段AB到點(diǎn)C,使BC=2AB,取AC中點(diǎn)D;
(2)在(1)的條件下,如果AB=4,求線段BD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑OA⊥OC,點(diǎn)D在上,且=2,OA=4.
(1)∠COD= °;
(2)求弦AD的長(zhǎng);
(3)P是半徑OC上一動(dòng)點(diǎn),連結(jié)AP、PD,請(qǐng)求出AP+PD的最小值,并說明理由.
(解答上面各題時(shí),請(qǐng)按題意,自行補(bǔ)足圖形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)=++的頂點(diǎn)M是直線=-和直線=+的交點(diǎn).
(1)若直線=+過點(diǎn)D(0,-3),求M點(diǎn)的坐標(biāo)及二次函數(shù)=++的解析式;
(2)試證明無論取任何值,二次函數(shù)=++的圖象與直線=+總有兩個(gè)不同的交點(diǎn);
(3)在(1)的條件下,若二次函數(shù)=++的圖象與軸交于點(diǎn)C,與的右交點(diǎn)為A,試在直線=-上求異于M的點(diǎn)P,使P在△CMA的外接圓上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.
(1)求出∠AOB及其補(bǔ)角的度數(shù);
(2)請(qǐng)求出∠DOC和∠AOE的度數(shù),并判斷∠DOE與∠AOB是否互補(bǔ),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P(3,﹣x2﹣1)所在的象限是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com