已知關(guān)于x的方程(x+1)2+(x-b)2=2有唯一的實數(shù)解,且反比例函數(shù)的圖象在每個象限內(nèi)y隨x的增大而增大,那么反比例函數(shù)的關(guān)系式為( )
A.
B.
C.
D.
【答案】分析:關(guān)于x的方程(x+1)2+(x-b)2=2有唯一的實數(shù)解,則判別式等于0,據(jù)此即可求得b的值,然后根據(jù)反比例函數(shù)的圖象在每個象限內(nèi)y隨x的增大而增大,則比例系數(shù)1+b<0,則b的值可以確定,從而確定函數(shù)的解析式.
解答:解:關(guān)于x的方程(x+1)2+(x-b)2=2化成一般形式是:2x2+(2-2b)x+(b2-1)=0,
△=(2-2b)2-8(b2-1)=-4(b+3)(b-1)=0,
解得:b=-3或1.
∵反比例函數(shù)的圖象在每個象限內(nèi)y隨x的增大而增大,
∴1+b<0
∴b<-1,
∴b=-3.
則反比例函數(shù)的解析式是:y=,即y=-
故選D.
點評:本題考查了反比例函數(shù)的性質(zhì),以及一元二次方程的根的判別式,正確利用判別式求得b的值是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0.
(1)求證:方程恒有兩個不相等的實數(shù)根;
(2)若此方程的一個根是1,請求出方程的另一個根,并直接寫出以這兩根為直角邊的直角三角形外接圓半徑的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程m(x-1)=4x-m的解是-4,求m2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程4x-3m=2的解是x=m,則m=
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程|x|=ax-a有正根且沒有負(fù)根,則a的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程3x2-4x•sinα+2(1-cosα)=0有兩個不相等的實數(shù)根,α為銳角,那么α的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案