【題目】如圖,在四邊形ABCD中,E、F分別為對角線BD上的兩點,且BE=DF.
(1)若四邊形AECF是平行四邊形,求證:四邊形ABCD是平行四邊形;
(2)若四邊形AECF是菱形,則四邊形ABCD是菱形嗎?請說明理由?
(3)若四邊形AECF是矩形,則四邊形ABCD是矩形嗎?不必寫出理由.
【答案】
(1)證明:連接AC交BD于點O,如圖所示:
∵四邊形AECF是平行四邊形,
∴OA=OC,OE=OF,
∵BE=DF,
∴OB=OD,
∴四邊形ABCD是平行四邊形
(2)解:理由如下:
∵四邊形AECF是菱形,
∴AC⊥BD,
由(1)知,四邊形ABCD是平行四邊形;
∴四邊形ABCD是菱形
(3)解:四邊形ABCD不是矩形;理由如下:
∵四邊形AECF是矩形,
∴OA=OC,OE=OF,AC=EF,
∴OA=OC=OE=OF,
∵BE=DF,
∴OB=OD,
∴AC<BD,
∴四邊形ABCD是平行四邊形,不是矩形.
【解析】(1)連接AC交BD于點O,由平行四邊形的性質(zhì)得出OA=OC,OE=OF,再證出OB=OD,即可得出結論;(2)由菱形的性質(zhì)得出AC⊥BD,即可得出結論;(3)由矩形的性質(zhì)得出OA=OC=OE=OF,證出OB=OD,AC<BD,得出四邊形ABCD是平行四邊形,不是矩形.
【考點精析】關于本題考查的平行四邊形的判定和菱形的判定方法,需要了解兩組對邊分別平行的四邊形是平行四邊形:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形;任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為了測量山頂鐵塔AE的高,小明在27m高的樓CD底部D測得塔頂A的仰角為45°,在樓頂C測得塔頂A的仰角36°52′.已知山高BE為56m,樓的底部D與山腳在同一水平線上,求該鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為解決群眾看病貴的問題,有關部門決定降低藥價,原價為30元的藥品經(jīng)過連續(xù)兩次降價,價格變?yōu)?/span>24.3元,則平均每次降價的百分率為( 。
A.10%B.15%C.20%D.25%
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com