【題目】如圖,在平面直角坐標(biāo)系中,OA=OB=8,OD=1,點(diǎn)C為線段AB的中點(diǎn)

(1)直接寫(xiě)出點(diǎn)C的坐標(biāo) ;

(2)求直線CD的解析式;

(3)在平面內(nèi)是否存在點(diǎn)F,使得以A、C、D、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)點(diǎn)C的坐標(biāo)為(4,4);(2)直線CD的解析式是y=(3)點(diǎn)F的坐標(biāo)是(11,4),(5-4)(-3,4)

【解析】

1)由OA,OB的長(zhǎng)度可得出點(diǎn)AB的坐標(biāo),結(jié)合點(diǎn)C為線段AB的中點(diǎn)可得出點(diǎn)C的坐標(biāo);
2)由OD的長(zhǎng)度可得出點(diǎn)D的坐標(biāo),根據(jù)點(diǎn)C,D的坐標(biāo),利用待定系數(shù)法可求出直線CD的解析式;
3)設(shè)點(diǎn)F的坐標(biāo)為(m,n),分AC為對(duì)角線、AD為對(duì)角線及CD為對(duì)角線三種情況,利用平行四邊形的對(duì)角線互相平分可得出關(guān)于mn的二元一次方程組,解之即可得出點(diǎn)F的坐標(biāo).

(1)OA=OB=8,點(diǎn)Ax軸正半軸,點(diǎn)By軸正半軸,

∴點(diǎn)A的坐標(biāo)為(80),點(diǎn)B的坐標(biāo)為(08)

又∵點(diǎn)C為線段AB的中點(diǎn),

∴點(diǎn)C的坐標(biāo)為(4,4)

(2)OD=1,點(diǎn)Dx軸的正半軸,

∴點(diǎn)D的坐標(biāo)為(1,0)

設(shè)直線CD的解析式為y=kx+b(k≠0),

C(4,4),D(1,0)代入y=kx+b

得:,

解得:,

∴直線CD的解析式是y=

(3)存在點(diǎn)F,使以A、C、D、F為點(diǎn)的四邊形為平行四邊形,設(shè)點(diǎn)F的坐標(biāo)為(mn)

分三種情況考慮,如圖所示:

①當(dāng)AC為對(duì)角線時(shí),

A(80)C(4,4),D(1,0),

,

解得:,

∴點(diǎn)F1的坐標(biāo)為(11,4)

②當(dāng)AD為對(duì)角線時(shí),

A(8,0)C(4,4)D(1,0)

,

解得:,

∴點(diǎn)F2的坐標(biāo)為(5-4);

③當(dāng)CD為對(duì)角線時(shí),

A(8,0),C(4,4),D(1,0)

,

解得:,

∴點(diǎn)F3的坐標(biāo)為(-3,4)

綜上所述,點(diǎn)F的坐標(biāo)是(11,4),(5,-4)(-3,4)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知正方形ABCOA0,3),點(diǎn)Dx軸上一動(dòng)點(diǎn),以AD為邊在AD的右側(cè)作等腰RtADE,∠ADE90°,連接OE,則OE的最小值為(

A. B. C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某新店開(kāi)業(yè)宣傳,進(jìn)店有禮活動(dòng),店員們需準(zhǔn)備制作圓柱體禮品紙盒(如圖①),每個(gè)紙盒由1個(gè)長(zhǎng)方形側(cè)面和2個(gè)圓形底面組成,現(xiàn)有100張正方形紙板全部以A或者B方法截剪制作(如圖②),設(shè)截剪時(shí)x張用A方法.

1)根據(jù)題意,完成以下表格:

裁剪法A

裁剪法B

長(zhǎng)方形側(cè)面

x

   

圓形底面

   

0

2)若裁剪出的長(zhǎng)方形側(cè)面和圓形底面恰好用完,問(wèn)能做多少個(gè)紙盒?

3)按以上制作方法,若店員們希望準(zhǔn)備300個(gè)禮盒,那至少還需要正方形紙板   張.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC,DBC邊的中點(diǎn),分別過(guò)點(diǎn)B、C作射線AD的垂線,垂足分別為E、F,連接BF、CE.

(1)求證:四邊形BECF是平行四邊形;

(2)AF=FD,在不添加輔助線的條件下,直接寫(xiě)出與△ABD面積相等的所有三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB=12cm,點(diǎn)C是線段AB上的一點(diǎn),BC=2AC.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向右運(yùn)動(dòng),到達(dá)點(diǎn)B后立即返回,以3cm/s的速度向左運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度向右運(yùn)動(dòng).設(shè)它們同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為ts.當(dāng)點(diǎn)P與點(diǎn)Q第二次重合時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng).

(1)AC=__cm,BC=__cm;

(2)當(dāng)t為何值時(shí),AP=PQ;

(3)當(dāng)t為何值時(shí),PQ=1cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:①平角就是一條直線;②直線比射線線長(zhǎng);③平面內(nèi)三條互不重合的直線的公共點(diǎn)個(gè)數(shù)有0個(gè)、1個(gè)、2個(gè)或3個(gè);④連接兩點(diǎn)的線段叫兩點(diǎn)之間的距離;⑤兩條射線組成的圖形叫做角;⑥一條射線把一個(gè)角分成兩個(gè)角,這條射線是這個(gè)角的角平分線,其中正確的有(

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將兩塊直角三角尺的直角頂點(diǎn)O疊放在一起。

1)若∠AOD=25°,則∠AOC= 65° ,∠BOD= ,∠BOC=

2)比較∠AOC與∠BOD的大小關(guān)系,并說(shuō)明理由;

3)猜想∠AOD與∠BOC的數(shù)量關(guān)系,并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小麗暑假期間參加社會(huì)實(shí)踐活動(dòng),從某批發(fā)市場(chǎng)以批發(fā)價(jià)每個(gè)m元的價(jià)格購(gòu)進(jìn)100個(gè)手機(jī)充電寶,然后每個(gè)加價(jià)n元到市場(chǎng)出售(結(jié)果用含m,n的式子表示)

(1)求售出100個(gè)手機(jī)充電寶的總售價(jià)為多少元?

(2)由于開(kāi)學(xué)臨近,小麗在成功售出60個(gè)充電寶后,決定將剩余充電寶按售價(jià)8折出售,并很快全部售完.(:售價(jià)的8折即按原售價(jià)的80%出售)

①她的總銷售額是多少元?

②假如不采取降價(jià)銷售,且也全部售完,她將比實(shí)際銷售多盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)AB的中點(diǎn),DEAB交于點(diǎn)G,EFAC交于點(diǎn)H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:

①EFAC;四邊形ADFE為菱形;③AD=4AG;④FH=BD

其中正確結(jié)論的為______(請(qǐng)將所有正確的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案