【題目】如圖是某居民小區(qū)的一塊面積為4ab平方米的長方形空地,準(zhǔn)備在空地的四個(gè)頂點(diǎn)處修建一個(gè)半徑為a米的扇形花臺(tái),在花臺(tái)內(nèi)種花,其余部分種草.如果建造花臺(tái)及種花費(fèi)用每平方米需要資金100元,種草每平方米需要資金50元,那么美化這塊空地共需資金多少元?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
①;
② ;
③ 17-8÷(-2)+4×(—5) ;
④;
⑤ (﹣2)2×7﹣(﹣3)×6﹣|﹣5|;
⑥ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,中線BE,CD相交于點(diǎn)O,連接DE,則下列判斷錯(cuò)誤的是( )
A.DE是△ABC的中位線
B.點(diǎn)O是△ABC的重心
C.△DEO∽△CBO
D.=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知ΔABC在坐標(biāo)平面內(nèi)的頂點(diǎn)C(2,0),∠ACB=90°,∠B=30°,AB=6,∠BCD=45°。①求A、B的坐標(biāo);②求AB中點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若直線y=kx+b的大致圖象如圖所示,則不等式kx+b 3的解集是( )
A.x >0
B. x <2
C.x ≥0
D.x≤2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次數(shù)學(xué)活動(dòng)課上,老師留下了這樣一道題“任畫一個(gè)△ABC,以BC的中點(diǎn)O為對(duì)稱中心,作△ABC的中心對(duì)稱圖形,問△ABC與它的中心對(duì)稱圖形拼成了一個(gè)什么形狀的特殊四邊形?并說明理由.”
于是大家討論開了,小亮說:“拼成的是平行四邊形”; 小華說:“拼成的是矩形”;
小強(qiáng)說:“拼成的是菱形”; 小紅說:“拼成的是正方形”;其他同學(xué)也說出了自己的看法……你贊同他們中的誰的觀點(diǎn)?為什么?若都不贊同,請(qǐng)說出你的觀點(diǎn)(畫出圖形),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=8cm,AD=12cm,點(diǎn)P在AD邊上以每秒1cm 的速度從點(diǎn)A向點(diǎn)D運(yùn)動(dòng),點(diǎn)Q在BC邊上,以每秒4cm的速度從點(diǎn)C出發(fā),在CB間往返運(yùn)動(dòng),兩個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí)停止(同時(shí)點(diǎn)Q也停止),在運(yùn)動(dòng)以后,以P、D、Q、B四點(diǎn)組成平行四邊形的次數(shù)有__次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①abc>0,②a﹣b+c<0,③2a=b,④4a+2b+c>0,⑤若點(diǎn)(﹣2,y1)和(﹣ ,y2)在該圖象上,則y1>y2 . 其中正確的結(jié)論是(填入正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為6cm的等邊三角形.若點(diǎn)P以1cm/s的速度從點(diǎn)B出發(fā),同時(shí)點(diǎn)Q以1.5cm/s的速度從點(diǎn)C出發(fā),都按逆時(shí)針方向沿△ABC的邊運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為6秒.
(1)試求出運(yùn)動(dòng)到多少秒時(shí),直線PQ與△ABC的某邊平行;
(2)當(dāng)運(yùn)動(dòng)到t1秒時(shí),P、Q對(duì)應(yīng)的點(diǎn)為P1、Q1,當(dāng)運(yùn)動(dòng)到t2秒時(shí)(t1≠t2),P、Q對(duì)應(yīng)的點(diǎn)為P2、Q2,試問:△P1CQ1與△P2CQ2能否全等?若能,求出t1、t2的值;若不能,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com