【題目】張師傅駕車從甲地去乙地,途中在加油站加了一次油,加油時(shí),車載電腦顯示還有4升油.假設(shè)加油前、后汽車都以100千米小時(shí)的速度勻速行駛,已知油箱中剩余油量(升)與行駛時(shí)間(小時(shí))之間的關(guān)系如圖所示.

1)求張師傅加油前油箱剩余油量(升)與行駛時(shí)間(小時(shí))之間的關(guān)系式;

2)求出的值;

3)求張師傅途中加油多少升?

【答案】1;(2;(3)張師傅途中加油46.

【解析】

(1)設(shè)函數(shù)解析式為y=kt+b,將點(diǎn)(0,28)與(1,20)代入即可求得;(2)由圖像知a值即是加油時(shí)油箱中的剩余4升油時(shí)對(duì)應(yīng)的t值,所以將y=4代入即可解出答案;(3)由(1)知汽車每小時(shí)耗油8升,設(shè)加油x升,28+x是油箱中的油量,減去5小時(shí)所耗油量得油箱中剩余油量34,依次列方程即可解得x值.

解:(1)設(shè)加油前函數(shù)關(guān)系為

代入

解得:

故張師傅加油前油箱剩余油量(升)與行駛時(shí)間(小時(shí))之間的關(guān)系式為:

2)當(dāng)時(shí),

解得:

3)設(shè)途中加油升,則

解得:

答:張師傅途中加油46.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道“兩邊和一角分別相等的兩個(gè)三角形不一定全等”,如圖(1),,,但卻不全等.但是如果兩個(gè)直角三角形呢?如圖(2),,則嗎?

(1)根據(jù)圖(2)完成以下證明和閱讀:

中,

____________(勾股定理)

,____________

,.____________

中,,,

____________(____________)

歸納:斜邊和一條直角邊相等的兩個(gè)直角三角形全等;簡(jiǎn)稱為“斜邊直角邊”或“”.

幾何語(yǔ)言如下:

中,

(2)如圖(3)已知,;求證:平分.(每一步都要填寫理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BA=BC,D在邊CB上,且DB=DA=AC

1)如圖1,填空∠B= °,∠C= °;

2)若M為線段BC上的點(diǎn),過M作直線MH⊥ADH,分別交直線AB、AC與點(diǎn)NE,如圖2

求證:△ANE是等腰三角形;

試寫出線段BN、CE、CD之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABCADE均為等邊三角形,連接BE,CD,點(diǎn)F,G,H分別為DE,BE,CD中點(diǎn).

(1)當(dāng)ADE繞點(diǎn)A旋轉(zhuǎn)時(shí),如圖1,則FGH的形狀為 ,說明理由;

(2)在ADE旋轉(zhuǎn)的過程中,當(dāng)B,D,E三點(diǎn)共線時(shí),如圖2,若AB=3,AD=2,求線段FH的長(zhǎng);

(3)在ADE旋轉(zhuǎn)的過程中,若AB=aAD=bab>0),則FGH的周長(zhǎng)是否存在最大值和最小值,若存在,直接寫出最大值和最小值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖在平面直角坐標(biāo)系中

1作出ABC關(guān)于軸對(duì)稱的,并寫出三個(gè)頂點(diǎn)的坐標(biāo) (  ),( 。( 。;

2直接寫出ABC的面積為 ;

3軸上畫點(diǎn)P,使PA+PC最小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為1個(gè)單位的圓片上有一點(diǎn)A與數(shù)軸上的原點(diǎn)重合,AB是圓片的直徑.

(1)把圓片沿?cái)?shù)軸向左滾動(dòng)1周,點(diǎn)A到達(dá)數(shù)軸上點(diǎn)C的位置,點(diǎn)C表示的數(shù)是______數(shù)(填“無理”或“有理”),這個(gè)數(shù)是______;

(2)把圓片沿?cái)?shù)軸滾動(dòng)2周,點(diǎn)A到達(dá)數(shù)軸上點(diǎn)D的位置,點(diǎn)D表示的數(shù)是______

(3)圓片在數(shù)軸上向右滾動(dòng)的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動(dòng)的周數(shù)記為負(fù)數(shù),依次運(yùn)動(dòng)情況記錄如下:+2,-1,-5,+4,+3,-2當(dāng)圓片結(jié)束運(yùn)動(dòng)時(shí),A點(diǎn)運(yùn)動(dòng)的路程共有多少?此時(shí)點(diǎn)A所表示的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,C,D,E,F(xiàn),G,H為⊙O的八等分點(diǎn),ADBH的交點(diǎn)為I,若⊙O的半徑為1,則HI的長(zhǎng)等于(  )

A. 2﹣ B. 2+ C. 2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線:軸相交于B,與軸相交于點(diǎn)A.直線:經(jīng)過原點(diǎn),并且與直線相交于C點(diǎn).

(1)ΔOBC的面積;

(2)如圖2,在軸上有一動(dòng)點(diǎn)E,連接CE.CE+BE是否有最小值,如果有,求出相應(yīng)的點(diǎn)E的坐標(biāo)及CE+BE的最小值;如果沒有,請(qǐng)說明理由;

(3)如圖3,在(2)的條件下,以CE為一邊作等邊ΔCDE,D點(diǎn)正好落在軸上.ΔDCE繞點(diǎn)D順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角度為(0°≤≤360),記旋轉(zhuǎn)后的三角形為ΔDCE′,點(diǎn)CE的對(duì)稱點(diǎn)分別為C′,E′.在旋轉(zhuǎn)過程中,設(shè)C′E′所在的直線與直線相交于點(diǎn)M,與軸正半軸相交于點(diǎn)N.當(dāng)ΔOMN為等腰三角形時(shí),求線段ON的長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的面積法給了小聰以靈感,他驚喜的發(fā)現(xiàn),當(dāng)兩個(gè)全等的直角三角形如圖1或圖2擺放時(shí),都可以用面積法來證明,下面是小聰利用圖1證明勾股定理的過程:

將兩個(gè)全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2.

證明:連結(jié)DB,過點(diǎn)DBC邊上的高DF,則DF=EC=b﹣a,

∵S四邊形ADCB=SACD+SABC= 12 b2+ 12 ab.

∵S四邊形ADCB=SADB+SDCB= 12 c2+ 12 a(b﹣a)

∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)

∴a2+b2=c2

請(qǐng)參照上述證法,利用圖2完成下面的證明.

將兩個(gè)全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2

查看答案和解析>>

同步練習(xí)冊(cè)答案