【題目】已知△ABC中,∠C=90°,tanA= ,D是AC上一點,∠CBD=∠A,則sin∠ABD=( )
A.
B.
C.
D.
【答案】A
【解析】解:作DE⊥AB于點E. ∵∠CBD=∠A,
∴tanA=tan∠CBD= = ,
設CD=1,則BC=2,AC=4,
∴AD=AC﹣CD=3,
在直角△ABC中,AB= = =2 ,
在直角△ADE中,設DE=x,則AE=2x,
∵AE2+DE2=AD2 ,
∴x2+(2x)2=9,
解得:x= ,
則DE= ,AE= .
∴BE=AB﹣AE=2 ﹣ = ,
∴tan∠DBA= = ,
∴sin∠DBA= .
故選:A.
【考點精析】通過靈活運用勾股定理的概念和相似三角形的判定與性質,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,BD⊥AC于點D,E為BC上一點,過E點作EF⊥AC,垂足為F,過點D作DH∥BC交AB于點H.
(1)請你補全圖形。
(2)求證:∠BDH=∠CEF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市為創(chuàng)建省衛(wèi)生城市,有關部門決定利用現(xiàn)有的4200盆甲種花卉和3090盆乙種花卉,搭配A、B兩種園藝造型共60個,擺放于入城大道的兩側,搭配每個造型所需花卉數量的情況下表所示,結合上述信息,解答下列問題:
造型花卉 | 甲 | 乙 |
A | 80 | 40 |
B | 50 | 70 |
(1)符合題意的搭配方案有幾種?
(2)如果搭配一個A種造型的成本為1000元,搭配一個B種造型的成本為1500元,試說明選用那種方案成本最低?最低成本為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商廈進貨員在蘇州發(fā)現(xiàn)了一種應季圍巾,用8000元購進一批圍巾后,發(fā)現(xiàn)市場還有較大的需求,又在上海用17600元購進了同一種圍巾,數量恰好是在蘇州所購數量的2倍,但每條比在蘇州購進的多了4元.問某商廈在蘇州、上海分別購買了多少條圍巾?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD是△ABC的邊BC上的高,由下列條件中的某一個就能推出△ABC是等腰三角形的是__.
①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A(﹣m,n),B(0,m),且m、n滿足+(n﹣5)2=0,點C在y軸上,將△ABC沿y軸折疊,使點A落在點D處.
(1)寫出D點坐標并求A、D兩點間的距離;
(2)若EF平分∠AED,若∠ACF﹣∠AEF=20°,求∠EFB的度數;
(3)過點C作QH平行于AB交x軸于點H,點Q在HC的延長線上,AB交x軸于點R,CP、RP分別平分∠BCQ和∠ARX,當點C在y軸上運動時,∠CPR的度數是否發(fā)生變化?若不變,求其度數;若變化,求其變化范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】按要求解答下列各題:
(1)解不等式:3x-5<2(2+3x);
(2)解不等式:2x-3≤ (x+2);
(3)解不等式: <x-1,并將解集在數軸上表示出來.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某飲料廠以300千克的A種果汁和240千克的B種果汁為原料,配制生產甲、乙兩種新型飲料,已知每千克甲種飲料含0.6千克A種果汁,含0.3千克B種果汁;每千克乙種飲料含0.2千克A種果汁,含0.4千克B種果汁.飲料廠計劃生產甲、乙兩種新型飲料共650千克,設該廠生產甲種飲料x(千克).
(1)列出滿足題意的關于x的不等式組,并求出x的取值范圍;
(2)已知該飲料廠的甲種飲料銷售價是每1千克3元,乙種飲料銷售價是每1千克4元,那么該飲料廠生產甲、乙兩種飲料各多少千克,才能使得這批飲料銷售總金額最大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,對于P(x,y)作變換得到P′(﹣y+1,x+1),例如:A1(3,1)作上述變換得到A2(0,4),再將A2做上述變換得到A3___________,這樣依次得到A1,A2,A3,…An;…,則A2018的坐標為___________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com