【題目】如圖,在△ABC中,AB=AC,AD是△ABC的角平分線,DE⊥AB,DF⊥AC,垂足分別為E,F.則下列結(jié)論:①AD上任意一點到點C,B的距離相等;②AD上任意一點到邊AB,AC的距離相等;③BD=CD,AD⊥BC;④∠BDE=∠CDF.其中正確的個數(shù)為( )
A. 4 B. 3 C. 2 D. 1
【答案】A
【解析】
根據(jù)等腰三角形三線合一的性質(zhì)可得AD垂直平分BC,再根據(jù)線段垂直平分線上的點到兩端點的距離相等可得AD上任意一點到點C和點B的距離相等,從而判斷出①正確;根據(jù)角平分線上的點到角的兩邊距離相等可得AD上任意一點到AB,AC的距離相等,從而判斷出②正確;根據(jù)等腰三角形三線合一的性質(zhì)可得③④正確.
∵AB=AC,AD是∠BAC的角平分線,
∴AD垂直平分BC,
∴AD上任意一點到點C和點B的距離相等,故①正確;
∵AD是∠BAC的角平分線,
∴AD上任意一點到AB,AC的距離相等,故②正確;
∵AB=AC,AD是∠BAC的角平分線,
∴BD=CD=BC,AD⊥BC,故③正確;
∵AD是△ABC的角平分線,DE⊥AB,DF⊥AC,
∴DE=DF,
在Rt△BDE和Rt△CDF中,
,
∴Rt△BDE≌Rt△CDF(HL),
∴∠BDE=∠CDF,故④正確;
綜上所述,結(jié)論正確的是①②③④共4個
故選A
科目:初中數(shù)學 來源: 題型:
【題目】有三張卡片(形狀、大小、顏色、質(zhì)地都相等),正面分別寫上整式x2+1,﹣x2﹣2,3.將這三張卡片背面向上洗勻,從中任意抽取一張卡片,記卡片上的整式為A,再從剩下的卡片中任意抽取一張,記卡片上的整式為B,于是得到代數(shù)式 .
(1)請用畫樹狀圖或列表的方法,寫出代數(shù)式 所有可能的結(jié)果;
(2)求代數(shù)式 恰好是分式的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】教室里的飲水機接通電源就進入自動程序,開機加熱時每分鐘上升10℃,加熱到100℃,停止加熱,水溫開始下降,此時水溫(℃)與開機后用時(min)成反比例關系.直至水溫降至30℃,飲水機關機.飲水機關機后即刻自動開機,重復上述自動程序.若在水溫為30℃時,接通電源后,水溫y(℃)和時間(min)的關系如圖,為了在上午第一節(jié)下課時(8:45)能喝到不超過50℃的水,則接通電源的時間可以是當天上午的( )
A.7:20
B.7:30
C.7:45
D.7:50
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】乘法公式的探究及應用.
(1)如圖1,可以求出陰影部分的面積是 (寫成兩數(shù)平方差的形式);
(2)如圖2,若將陰影部分裁剪下來,重新拼成一個矩形,它的寬是 ,長是 ,面積是 (寫成多項式乘法的形式);
(3)比較圖1、圖2兩圖的陰影部分面積,可以得到乘法公式 (用式子表達);
(4)運用你所得到的公式,計算下列各題:
①(2m+n-p)(2m-n+p);②10.3×9.7.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AC、BD相交于點O,AD=BC,AE⊥BD于點E,CF⊥BD于點F,BE=DF.求證:
(1)△ADE≌△CBF;
(2)OA=OC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】聯(lián)想三角形外心的概念,我們可引入如下概念。
定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心。
舉例:如圖1,若PA=PB,則點P為△ABC的準外心。
應用:如圖2,CD為等邊三角形ABC的高,準外心P在高CD上,且PD=AB,求∠APB的度數(shù)。
探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準外心P在AC邊上,試探究PA的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的直角坐標系中,△ABC的頂點坐標分別是A(-4,-1),B(1,1),C(-1,4);點是△ABC內(nèi)一點,當點平移到點時.
①請寫出平移后新三個頂點的坐標;
②求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙、丙、丁一起研究一道數(shù)學題,如圖,已知 EF⊥AB,CD⊥AB,甲說:“如果還知道∠CDG=∠BFE,則能得到∠AGD=∠ACB.”乙說:“如果還知道∠AGD=∠ACB,則能得到∠CDG=∠BFE.”丙說:“∠AGD 一定大于∠BFE.”丁說:“如果連接 GF,則 GF∥AB.”他們四人中,正確的是( 。
A.0 個B.1 個C.2 個D.3 個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com