【題目】如圖,ABC,AB=AC,ADABC的角平分線,DEAB,DFAC,垂足分別為E,F.則下列結(jié)論:AD上任意一點到點C,B的距離相等;AD上任意一點到邊AB,AC的距離相等;BD=CD,ADBC;④∠BDE=CDF.其中正確的個數(shù)為(

A. 4 B. 3 C. 2 D. 1

【答案】A

【解析】

根據(jù)等腰三角形三線合一的性質(zhì)可得AD垂直平分BC,再根據(jù)線段垂直平分線上的點到兩端點的距離相等可得AD上任意一點到點C和點B的距離相等,從而判斷出①正確;根據(jù)角平分線上的點到角的兩邊距離相等可得AD上任意一點到AB,AC的距離相等,從而判斷出②正確;根據(jù)等腰三角形三線合一的性質(zhì)可得③④正確.

AB=ACAD是∠BAC的角平分線,

AD垂直平分BC,

AD上任意一點到點C和點B的距離相等,故①正確;

AD是∠BAC的角平分線,

AD上任意一點到AB,AC的距離相等,故②正確;

AB=AC,AD是∠BAC的角平分線,

BD=CD=BC,ADBC,故③正確;

ADABC的角平分線,DEAB,DFAC

DE=DF,

RtBDERtCDF中,

,

RtBDERtCDFHL),

∴∠BDE=CDF,故④正確;

綜上所述,結(jié)論正確的是①②③④共4

故選A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】有三張卡片(形狀、大小、顏色、質(zhì)地都相等),正面分別寫上整式x2+1,﹣x2﹣2,3.將這三張卡片背面向上洗勻,從中任意抽取一張卡片,記卡片上的整式為A,再從剩下的卡片中任意抽取一張,記卡片上的整式為B,于是得到代數(shù)式
(1)請用畫樹狀圖或列表的方法,寫出代數(shù)式 所有可能的結(jié)果;
(2)求代數(shù)式 恰好是分式的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】教室里的飲水機接通電源就進入自動程序,開機加熱時每分鐘上升10℃,加熱到100℃,停止加熱,水溫開始下降,此時水溫(℃)與開機后用時(min)成反比例關系.直至水溫降至30℃,飲水機關機.飲水機關機后即刻自動開機,重復上述自動程序.若在水溫為30℃時,接通電源后,水溫y(℃)和時間(min)的關系如圖,為了在上午第一節(jié)下課時(8:45)能喝到不超過50℃的水,則接通電源的時間可以是當天上午的( )

A.7:20
B.7:30
C.7:45
D.7:50

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】乘法公式的探究及應用.

(1)如圖1,可以求出陰影部分的面積是 (寫成兩數(shù)平方差的形式);

(2)如圖2,若將陰影部分裁剪下來,重新拼成一個矩形,它的寬是 ,長是 ,面積是 (寫成多項式乘法的形式);

(3)比較圖1、圖2兩圖的陰影部分面積,可以得到乘法公式 (用式子表達);

(4)運用你所得到的公式,計算下列各題:

①(2m+n-p)(2m-n+p);②10.3×9.7.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AC、BD相交于點OADBC,AEBD于點ECFBD于點F,BEDF.求證:

1ADE≌△CBF;

2OAOC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AD是∠BAC的平分線,E、F分別為AB、AC上的點,且∠EDF+EAF=180°,求證DE=DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】聯(lián)想三角形外心的概念,我們可引入如下概念。

定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心。

舉例:如圖1,若PA=PB,則點P為△ABC的準外心。

應用:如圖2,CD為等邊三角形ABC的高,準外心P在高CD上,且PD=AB,求∠APB的度數(shù)。

探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準外心P在AC邊上,試探究PA的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的直角坐標系中,△ABC的頂點坐標分別是A(4,-1),B(11),C(1,4);點是△ABC內(nèi)一點,當點平移到點時.

①請寫出平移后新三個頂點的坐標;

②求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁一起研究一道數(shù)學題,如圖,已知 EFABCDAB,甲說:“如果還知道∠CDG=BFE,則能得到∠AGD=ACB.”乙說:“如果還知道∠AGD=ACB,則能得到∠CDG=BFE.”丙說:“∠AGD 一定大于∠BFE.”丁說:“如果連接 GF,則 GFAB.”他們四人中,正確的是( 。

A.0 B.1 C.2 D.3

查看答案和解析>>

同步練習冊答案