【題目】甲、乙、丙、丁一起研究一道數(shù)學(xué)題,如圖,已知 EF⊥AB,CD⊥AB,甲說:“如果還知道∠CDG=∠BFE,則能得到∠AGD=∠ACB.”乙說:“如果還知道∠AGD=∠ACB,則能得到∠CDG=∠BFE.”丙說:“∠AGD 一定大于∠BFE.”丁說:“如果連接 GF,則 GF∥AB.”他們四人中,正確的是( 。
A.0 個B.1 個C.2 個D.3 個
【答案】C
【解析】
根據(jù)EF⊥AB,CD⊥AB,可得EF//CD,
①根據(jù)∠CDG=∠BFE結(jié)合兩直線平行,同位角相等可得∠CDG=∠BCD,由此可得DG//BC,再根據(jù)兩直線平行,同位角相等可得甲的結(jié)論;
②根據(jù)∠AGD=∠ACB可得DG//BC,再根據(jù)平行線的性質(zhì)定理可得乙的結(jié)論;
③根據(jù)已知條件無法判斷丙的說法是否正確;
④根據(jù)已知條件無法判斷丁的說法是否正確.
解:∵CD⊥AB,FE⊥AB,
∴CD∥EF,
∴∠BFE=∠BCD,
①∵∠CDG=∠BFE,
∴∠CDG=∠BCD,
∴DG∥BC,
∴∠AGD=∠ACB,
∴甲正確;
②∵∠AGD=∠ACB,
∴DG∥BC,
∴∠CDG=∠BCD,
∴∠CDG=∠BFE,
∴乙正確;
③DG不一定平行于BC,所以∠AGD不一定大于∠BFE;
④如果連接GF,則只有GF⊥EF時丁的結(jié)論才成立;
∴丙錯誤,丁錯誤;
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是△ABC的角平分線,DE⊥AB,DF⊥AC,垂足分別為E,F.則下列結(jié)論:①AD上任意一點到點C,B的距離相等;②AD上任意一點到邊AB,AC的距離相等;③BD=CD,AD⊥BC;④∠BDE=∠CDF.其中正確的個數(shù)為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,AB=AC,D為BC上一點,E為AC上一點,AD=AE.
(1)如果∠BAD=10°,∠DAE=30°,那么∠EDC= °.
(2)如果∠ABC=60°,∠ADE=70°,那么∠BAD= °,∠CDE= °.
(3)設(shè)∠BAD=α,∠CDE=β猜想α,β之間的關(guān)系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正確結(jié)論有【 】個.
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架梯子AB長13米,斜靠在一面墻上,梯子底端離墻5米.(1)這個梯子的頂端距地面有多高?(2)如果梯子的頂端下滑了5米,那么梯子的底端在水平方向滑動了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P為△ABC的內(nèi)心,延長AP交△ABC的外接圓于D,在AC延長線上有一點E,滿足AD2=ABAE.
求證:DE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=6,BC=8,AC,BD相交于O,P是邊BC上一點,AP與BD交于點M,DP與AC交于點N.
①若點P為BC的中點,則AM:PM=2:1;
②若點P為BC的中點,則四邊形OMPN的面積是8;
③若點P為BC的中點,則圖中陰影部分的總面積為28;
④若點P在BC的運動,則圖中陰影部分的總面積不變.
其中正確的是 . (填序號即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,、的交點為,現(xiàn)作如下操作:
第一次操作,分別作和的平分線,交點為,
第二次操作,分別作和的平分線,交點為,
第三次操作,分別作和的平分線,交點為,
…
第次操作,分別作和的平分線,交點為.
若度,那等于__________度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com