【題目】為了傳承優(yōu)秀傳統(tǒng)文化,我市組織了一次初三年級1200名學生參加的“漢字聽寫”大賽,為了更好地了解本次大賽的成績分布情況,隨機抽取了100名學生的成績(滿分50分),整理得到如下的統(tǒng)計圖表:
成績(分) | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
人數(shù) | 1 | 2 | 3 | 3 | 6 | 7 | 5 | 8 | 15 | 9 | 11 | 12 | 8 | 6 | 4 |
成績分組 | 頻數(shù) | 頻率 |
35≤x<38 | 3 | 0.03 |
38≤x<41 | a | 0.12 |
41≤x<44 | 20 | 0.20 |
44≤x<47 | 35 | 0.35 |
47≤x≤50 | 30 | b |
請根據(jù)所提供的信息解答下列問題:
(1)樣本的中位數(shù)是分;
(2)頻率統(tǒng)計表中a= , b=;
(3)請補全頻數(shù)分布直方圖;
(4)請根據(jù)抽樣統(tǒng)計結(jié)果,估計該次大賽中成績不低于41分的學生有多少人?
【答案】
(1)44.5
(2)12;0.30
(3)補全的頻數(shù)分布直方圖如右圖所示,
(4)解:由題意可得,
1200×(0.20+0.35+0.30)=1020(人),
即該次大賽中成績不低于41分的學生有1020人.
【解析】解:(1.)∵隨機抽取了100名學生的成績, 由表格可得,1+2+3+3+6+7+5+8+15=50,50+9+59,
∴中位數(shù)為: =44.5,
故答案為:44.5;
(2.)由表格可得,a=100×0.12=12,
b=30÷100=0.30,
故答案為:12,0.30;
(1)根據(jù)題意可知中位數(shù)是第50個數(shù)和51個數(shù)的平均數(shù),本題得以解決;(2)根據(jù)表格和隨機抽取了100名學生的成績,可以求得a、b的值,本題得以解決;(3)根據(jù)(2)中a的值,可以將頻數(shù)分布直方圖補充完整;(4)根據(jù)表格中的數(shù)據(jù)可以求得該次大賽中成績不低于41分的學生人數(shù).
科目:初中數(shù)學 來源: 題型:
【題目】某超市購進一批文具袋,每個進價為10元.試銷售期間,記錄的每天的銷售數(shù)量與銷售單價的數(shù)據(jù)如下表:
銷售單價x(元 | 11 | 12 | 13 | 14 | 15 | … |
銷售數(shù)量y(個) | 38 | 36 | 34 | 32 | 30 | … |
備注:物價局規(guī)定,每個文具袋的售價不低于10元且不高于18元 |
請你根據(jù)表中信息解答下列問題:
(1)y是x的函數(shù),其函數(shù)關(guān)系式為
(2)營業(yè)員發(fā)現(xiàn)有一天的利潤是150元,則銷售單價為元.
(3)試銷售的目的是想要每天獲得最大的銷售利潤.請你幫助銷售經(jīng)理計算一下,在這種情況下單價x(元)應(yīng)定為多少時,每天的銷售利潤w(元)最大,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設(shè)a1=22-02,a2=32-12,…,an=(n+1)2-(n-1)2(n為大于1的整數(shù))
(1)計算a15的值;
(2)通過拼圖你發(fā)現(xiàn)前三個圖形的面積之和與第四個正方形的面積之間有什么關(guān)系:
__________________________________(用含a、b的式子表示);
(3)根據(jù)(2)中結(jié)論,探究an=(n+1)2-(n-1)2是否為4的倍數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點 的坐標為,以 A 為頂點的的兩邊始終與 軸交于 、兩點(在 左面),且.
(1)如圖,連接,當 時,試說明:.
(2)過點 作軸,垂足為,當時,將沿所在直線翻折,翻折后邊 交 軸于點 ,求點 的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,點P在射線AC上,作點P關(guān)于直線CD的對稱點Q,作射線BQ交射線DC于點E,連接BP.
(1)當點P在線段AC上時,如圖1.
①依題意補全圖1;
②若EQ=BP,則∠PBE的度數(shù)為 ,并證明;
(2)當點P在線段AC的延長線上時,如圖2.若EQ=BP,正方形ABCD的邊長為1,請寫出求BE長的思路.(可以不寫出計算結(jié)果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O在直線AB上,點A1,A2,A3,…在射線OA上,點B1,B2,B3,…在射線OB上,圖中的每一個實線段和虛線段的長均為1個單位長度.一個動點M從O點出發(fā),按如圖所示的箭頭方向沿著實線段和以O為圓心的半圓勻速運動,速度為每秒1個單位長度.按此規(guī)律,則動點M到達A101點處所需時間為( )秒.
A. 5050π B. 5050π+101 C. 5055π D. 5055π+101
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠1=65°,∠2=65°,∠3=115°.試說明:DE∥BC,DF∥AB.根據(jù)圖形,完成下面的推理:
因為∠1=65°,∠2=65°,
所以∠1=∠2.
所以______________∥ ( ).
因為AB與DE相交,
所以∠1=∠4( ).
所以∠4=65°.
又因為∠3=115°,
所以∠3+∠4=180°.
所以 ∥ ( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀下面的內(nèi)容,再解決問題,
例題:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
解:∵m2+2mn+2n2﹣6n+9=0
∴m2+2mn+n2+n2﹣6n+9=0
∴(m+n)2+(n﹣3)2=0
∴m+n=0,n﹣3=0
∴m=﹣3,n=3
問題(1)若x2+2y2﹣2xy+4y+4=0,求xy的值.
(2)已知a,b,c是△ABC的三邊長,滿足a2+b2=10a+8b﹣41,且c是△ABC中最長的邊,求c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=mx2+(m2﹣m)x﹣2m+1的圖象與x軸交于點A、B,與y軸交于點C,頂點D的橫坐標為1.
(1)求二次函數(shù)的表達式及A、B的坐標;
(2)若P(0,t)(t<﹣1)是y軸上一點,Q(﹣5,0),將點Q繞著點P順時針方向旋轉(zhuǎn)90°得到點E.當點E恰好在該二次函數(shù)的圖象上時,求t的值;
(3)在(2)的條件下,連接AD、AE.若M是該二次函數(shù)圖象上一點,且∠DAE=∠MCB,求點M的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com