(2007•連云港)如圖1,在6×6的方格紙中,給出如下三種變換:P變換,Q變換,R變換.
將圖形F沿x軸向右平移1格得圖形F1,稱為作1次P變換;
將圖形F沿y軸翻折得圖形F2,稱為作1次Q變換;
將圖形F繞坐標(biāo)原點順時針旋轉(zhuǎn)90°得圖形F3,稱為作1次R變換.
規(guī)定:PQ變換表示先作1次Q變換,再作1次P變換;QP變換表示先作1次P變換,再依1次Q變換;Rn變換表示作n次R變換.
解答下列問題:
(1)作R4變換相當(dāng)于至少作次Q變換;
(2)請在圖2中畫出圖形F作R2007變換后得到的圖形F4
(3)PQ變換與QP變換是否是相同的變換?請在圖3中畫出PQ變換后得到的圖形F5,在圖4中畫出QP變換后得到的圖形F6

【答案】分析:(1)作R4變換相當(dāng)于將圖形F繞原點旋轉(zhuǎn)360度,對應(yīng)圖形與原圖重合,所以至少應(yīng)將F沿y軸翻折兩次;
(2)2007÷4=501…3,圖形F作R2007變換相等于繞原點順時針旋轉(zhuǎn)270度,即逆時針旋轉(zhuǎn)90度;
(3)因為PQ變換表示先作1次Q變換,再作1次P變換;QP變換表示先作1次P變換,再依1次Q變換,所以可按此作出圖形,再作判斷.
解答:解:(1)2次;(2分)
(2)正確畫出圖形F4;(5分)
(3)變換PQ與變換QP不是相同的變換,正確畫出圖形F5,F(xiàn)6各得(1分).(8分)

點評:本題的關(guān)鍵是作各個關(guān)鍵點的對應(yīng)點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《四邊形》(06)(解析版) 題型:解答題

(2007•連云港)如圖,在直角坐標(biāo)系中,矩形OABC的頂點O與坐標(biāo)原點重合,頂點A,C在坐標(biāo)軸上,OA=60cm,OC=80cm.動點P從點O出發(fā),以5cm/s的速度沿x軸勻速向點C運動,到達(dá)點C即停止.設(shè)點P運動的時間為ts.
(1)過點P作對角線OB的垂線,垂足為點T.求PT的長y與時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(2)在點P運動過程中,當(dāng)點O關(guān)于直線AP的對稱點O'恰好落在對角線OB上時,求此時直線AP的函數(shù)解析式;
(3)探索:以A,P,T三點為頂點的△APT的面積能否達(dá)到矩形OABC面積的?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《三角形》(04)(解析版) 題型:選擇題

(2007•連云港)如圖,在△ABC中,AB=AC=2,∠BAC=20°.動點P、Q分別在直線BC上運動,且始終保持∠PAQ=100°.設(shè)BP=x,CQ=y,則y與x之間的函數(shù)關(guān)系用圖象大致可以表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2007•連云港)某地區(qū)一種商品的需求量y1(萬件)、供應(yīng)量y2(萬件)與價格x(元/件)分別近似滿足下列函數(shù)關(guān)系式:y1=-x+60,y2=2x-36.需求量為0時,即停止供應(yīng).當(dāng)y1=y2時,該商品的價格稱為穩(wěn)定價格,需求量稱為穩(wěn)定需求量.
(1)求該商品的穩(wěn)定價格與穩(wěn)定需求量;
(2)價格在什么范圍,該商品的需求量低于供應(yīng)量;
(3)當(dāng)需求量高于供應(yīng)量時,政府常通過對供應(yīng)方提供價格補貼來提高供貨價格,以提高供應(yīng)量.現(xiàn)若要使穩(wěn)定需求量增加4萬件,政府應(yīng)對每件商品提供多少元補貼,才能使供應(yīng)量等于需求量?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:解答題

(2007•連云港)如圖,在直角坐標(biāo)系中,矩形OABC的頂點O與坐標(biāo)原點重合,頂點A,C在坐標(biāo)軸上,OA=60cm,OC=80cm.動點P從點O出發(fā),以5cm/s的速度沿x軸勻速向點C運動,到達(dá)點C即停止.設(shè)點P運動的時間為ts.
(1)過點P作對角線OB的垂線,垂足為點T.求PT的長y與時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(2)在點P運動過程中,當(dāng)點O關(guān)于直線AP的對稱點O'恰好落在對角線OB上時,求此時直線AP的函數(shù)解析式;
(3)探索:以A,P,T三點為頂點的△APT的面積能否達(dá)到矩形OABC面積的?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省黃石市十六中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2007•連云港)某地區(qū)一種商品的需求量y1(萬件)、供應(yīng)量y2(萬件)與價格x(元/件)分別近似滿足下列函數(shù)關(guān)系式:y1=-x+60,y2=2x-36.需求量為0時,即停止供應(yīng).當(dāng)y1=y2時,該商品的價格稱為穩(wěn)定價格,需求量稱為穩(wěn)定需求量.
(1)求該商品的穩(wěn)定價格與穩(wěn)定需求量;
(2)價格在什么范圍,該商品的需求量低于供應(yīng)量;
(3)當(dāng)需求量高于供應(yīng)量時,政府常通過對供應(yīng)方提供價格補貼來提高供貨價格,以提高供應(yīng)量.現(xiàn)若要使穩(wěn)定需求量增加4萬件,政府應(yīng)對每件商品提供多少元補貼,才能使供應(yīng)量等于需求量?

查看答案和解析>>

同步練習(xí)冊答案