精英家教網 > 初中數學 > 題目詳情

在矩形紙片ABCD中,AB=5,AD=13.如圖所示,折疊紙片,使點A落在BC邊上的A¢處,折痕為PQ,當點A¢在BC邊上移動時,折痕的端點P、Q也隨之移動.若限定點P、Q分別在AB、AD邊上移動,則點A¢在BC邊上可移動的最大距離為_________.

 

 

4

解析:如圖1,當點D與點Q重合時,根據翻折對稱性可得

A′D=AD=13,

在Rt△A′CD中,A′D2=A′C2+CD2,

即132=(13-A′B)2+52,

解得A′B=1,

如圖2,當點P與點B重合時,根據翻折對稱性可得A′B=AB=5,

∵5-1=4,

∴點A′在BC邊上可移動的最大距離為4.

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網在矩形紙片ABCD中,AB=6,BC=8.將矩形紙片沿BD折疊,使點A落在點E處,設DE與BC相交于點F,求BF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•太原)如圖,在矩形紙片ABCD中,AB=12,BC=5,點E在AB上,將△DAE沿DE折疊,使點A落在對角線BD上的點A′處,則AE的長為
10
3
10
3

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•黃石模擬)如圖,在矩形紙片ABCD中,AB=3,BC=4.把△BCD沿對角線BD折疊,使點C落在E處,BE交AD于點F;
(1)求證:AF=EF;
(2)求tan∠ABF的值;
(3)連接AC交BE于點G,求AG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在矩形紙片ABCD中,AB=6,BC=8,現將其沿EF對折,使得點C與點A重合,則AF的長為
25
4
cm
25
4
cm

查看答案和解析>>

科目:初中數學 來源: 題型:

動手操作:如圖,在矩形紙片ABCD中,AB=3,AD=5.如圖所示折疊紙片,使點A落在BC邊上的A′處,折痕為PQ,當點A′在BC邊上移動時,折痕的端點P、Q也隨之移動.若限定點P、Q分別在AB、AD邊上移動.
求:(1)當點Q與點D重合時,A′C的長是多少?
(2)點A′在BC邊上可移動的最大距離是多少?

查看答案和解析>>

同步練習冊答案