1.如圖1,正方形ABCD的邊長為1,點E是AD邊的中點,將△ABE沿BE翻折得到△FBE,延長BF交CD邊于點G,則FG=DG,求出此時DG的值;
2.如圖2,矩形ABCD中,AD>AB,AB=1,點E是AD邊的中點,同樣將△ABE沿BE翻折得到△FBE,延長BF交CD邊于點G.
①證明:FG=DG;
②若點G恰是CD邊的中點,求AD的值;
③若△ABE與△BCG相似,求AD的值.
1.解:設(shè)DG為x,
由題意得:BG=1+x,CG=1-x,
由勾股定理得:,
有:,
解得:.
∴DG=.
2.①證明:連接EG,
∵△FBE是由△ABE翻折得到的,
∴AE=FE, ∠EFB=∠EAB=90°,
∴∠EFG=∠EDG=90°.
∵AE=DE,
∴FE=DE.
∵EG=EG,
∴Rt△EFG≌Rt△EDG (HL) .
∴DG=FG. ………………………………………………… 5分
②解:若G是CD的中點,則DG=CG=,
在Rt△BCG中,,
∴AD=. ……………………………………
③解:由題意AB∥CD,∴∠ABG=∠CGB.
∵△FBE是由△ABE翻折得到的,
∴∠ABE=∠FBE=∠ABG,∴∠ABE=∠CGB.
∴若△ABE與△BCG相似,則必有∠ABE=∠CBG==30°.
在Rt△ABE中,AE=ABtan∠ABE=,
∴AD=2 AE=. ………………………………………………… 10分
【解析】略
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com