【題目】如圖,AB∥CD,AB=5cm,AC=4cm,線段AC上有一動點(diǎn)E,連接BE,ED,∠BED=∠A=60°,設(shè)A,E兩點(diǎn)間的距離為xcm,C,D兩點(diǎn)間的距離為ycm.

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小明的探究過程,請補(bǔ)充完整.

(1)列表:如表的已知數(shù)據(jù)是根據(jù)A,E兩點(diǎn)間的距離x進(jìn)行取點(diǎn)、畫圖、測量,分別得到了x與y的幾組對應(yīng)值:

x/cm

0

0.5

1

1.5

2

2.3

2.5

y/cm

0

0.39

0.75

1.07

1.33

1.45

    

x/cm

2.8

3.2

3.5

3.6

3.8

3.9

y/cm

1.53

1.42

1.17

1.03

0.63

0.35

請你補(bǔ)全表格;

(2)描點(diǎn)、連線:在平面直角坐標(biāo)系xOy中,描出表中各組數(shù)值所對應(yīng)的點(diǎn)(x,y),并畫出函數(shù)y關(guān)于x的圖象;

(3)探究性質(zhì):隨著自變量x的不斷增大,函數(shù)y的變化趨勢:    ;

(4)解決問題:當(dāng)AE=2CD時,CD的長度大約是    cm.

【答案】(1)1.50;(2)答案見解析;(3)當(dāng)0≤x≤2.8時,y隨x的增大而增大,當(dāng)2.8<x≤3.9時,y隨x的增大而減小(答案不唯一);(4)0.50cm或1.50cm(答案不唯一).

【解析】

(1)將所有點(diǎn)描述在平面直角坐標(biāo)系中,通過函數(shù)圖象得出:當(dāng)x=2.5時,y≈1.50cm;

(2)將所有點(diǎn)描述在平面直角坐標(biāo)系中,并順次連接起來即可;

(3)觀察圖象的上升或者下降趨勢即可得出y隨x的變化趨勢;

(4) 當(dāng)AE=2CD時即:yx,在平面直角坐標(biāo)系中畫出其圖象,與原圖象的交點(diǎn)即為CD的長度.

(1)通過畫圖得:當(dāng)x=2.5時,y≈1.50cm.

故答案為:1.50(答案唯一);

(2)畫出該函數(shù)的圖象如下:

(3)隨著自變量x的不斷增大,函數(shù)y的變化趨勢是:當(dāng)0≤x≤2.8時,y隨x的增大而增大,當(dāng)2.8<x≤3.9時,y隨x的增大而減小(其中2.8是概略數(shù)值,答案不唯一).

故答案為:當(dāng)0≤x≤1.8時,y隨x的增大而增大,當(dāng)2.8<x≤3.9時,y隨x的增大而減小(答案不唯一);

(4)當(dāng)AE=2CD時,即x=2y,則yx,

畫出函數(shù)圖象:yx,該函數(shù)圖象和原函數(shù)圖象交點(diǎn),即為所求,

兩個函數(shù)交點(diǎn)的橫坐標(biāo)為:0.50或1.50,

故CD=y=0.50或1.50.

故答案為:0.50cm或1.50cm(答案不唯一).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,AB20,連接BD,點(diǎn)P是射線BC上一點(diǎn)(不與點(diǎn)B重合),AP與對角線BD交于點(diǎn)E,連接EC

1)求證:AECE

2)若sinABD,當(dāng)點(diǎn)P在線段BC上時,若BP8,求PEC的面積;

3)若∠ABC45°,當(dāng)點(diǎn)P在線段BC的延長線上時,請求出PEC是等腰三角形時BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年共享單車上市以來,給人們的出行提供了便利,受到了廣大市民的青睞,某公司為了了解員工上下班回家的路程(設(shè)路程為x千米)情況,隨機(jī)抽取了若干名員工進(jìn)行了問卷調(diào)查,現(xiàn)將這些員工的調(diào)查結(jié)果分為四個等級,A0x3B3x6;C6x9;Dx9;并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖:

1)請補(bǔ)全上面的條形統(tǒng)計圖,并求mn的值;

2)在扇形統(tǒng)計圖中,求扇形“C”所對應(yīng)的圓心角α的度數(shù);

3)若該公司有600名員工,請你估計該公司路程在6千米以上選擇共享單車上下班的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca0)圖象如圖,下列結(jié)論:①abc>0;②2a+b=0;當(dāng)m1時,a+b>am2+bm④a-b+c>0;ax12+bx1=ax22+bx2,且x1x2,x1+x2=2.其中正確的有(

A.B.C.①②D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)EF分別為AB,AD的中點(diǎn),CE,BF相交于點(diǎn)GAB=2,則CG=(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD4,∠C90°,點(diǎn)B在線段CD上,,沿AB所在的直線折疊△ACB得到△ACB,若△DCB是以BC'為腰的等腰三角形,則線段CB的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)設(shè)計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進(jìn)行試銷據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本

1當(dāng)銷售單價為70元時,每天的銷售利潤是多少?

2求出每天的銷售利潤y與銷售單價x之間的函數(shù)關(guān)系式,并求出自變量的取值范圍;

3如果該企業(yè)每天的總成本不超過7000元,那么銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?每天的總成本=每件的成本×每天的銷售量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于A、B兩點(diǎn),軸交于點(diǎn)C,拋物線的對稱軸交軸于點(diǎn)D,已知點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)C的坐標(biāo)為(0,2)

(1)求拋物線的解析式;

(2)在拋物線的對稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,請直接寫出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對角線,AGDBCB的延長線于G.

(1)求證:四邊形AGBD為平行四邊形;

(2)若四邊形AGBD是矩形,則四邊形BEDF是什么特殊四邊形?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案