解:(1)證明:∵OB=OC,∠DBA=30°,
∴∠OCB=∠DBA=30°,
∵∠POA為△BOC的外角,
∴∠POA=∠OCB+∠DBA=60°,
又∵EA切⊙O于點A,
∴∠PAO=90°,
∴∠APO=30°,
∴OA=
OP;
(2)過O作OF⊥BC,交BC于點F,
在Rt△OBF中,OB=
cm,∠B=30°,
∴OF=
OB=
cm,
根據(jù)勾股定理得:BF=
=
cm,
∴BC=2BF=3cm,
∴S
△OBC=
BC•OF=
cm
2,
在Rt△BAD中,∠DBA=30°,AB=2
cm,
∴AD=AB•tan30°=2cm,
∴S
△BAD=
AD•AB=
×2×2
=2
cm
2,
則S
四邊形OADC=S
△BAD-S
△OBC=2
-
=
cm
2.
分析:(1)由OB=OC,利用等邊對等角得到一對角相等,由∠DBA=30°得到∠BCO=30°,再由∠AOC為三角形BOC的外角,利用外角性質(zhì)求出∠AOP=60°,在直角三角形AOP中,得到∠OPA=30°,利用30°所對的直角邊等于斜邊的一半得到OA為OP的一半,得證;
(2)過O作OF垂直于BC,交BC于點F,在直角三角形BOF中,利用30°所對的直角邊等于斜邊的一半求出OF的長,再利用勾股定理求出BF的長,得出BC的長,由BC乘以BC上的高OF除以2得到三角形BOC的面積,同理在直角三角形ABD中,由AB的長,利用銳角三角函數(shù)定義求出AD的長,求出三角形ABD的面積,用三角形ABD的面積減去三角形BOC的面積,即可得到四邊形OADC的面積.
點評:此題考查了切線的性質(zhì),含30°直角三角形的性質(zhì),勾股定理,以及銳角三角函數(shù)定義,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.