【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時(shí)出發(fā),設(shè)慢車行駛的時(shí)間為x(h),兩車之間的距離為y(km),圖中的折線表示y與x之間的函數(shù)關(guān)系,根據(jù)圖像進(jìn)行探究。

(1)填空甲、乙兩地之間的距離為_______千米;

(2)請解釋圖中的點(diǎn)B的實(shí)際意義;________________

(3)直接寫出慢車速度_________,快車的速度___________

(4)求線段BC所表示的y與x之間的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;

【答案】(1)900.……1

  (2)圖中點(diǎn)B的實(shí)際意義是:當(dāng)慢車行駛4h時(shí),慢車和快車相遇.……2

(3)由圖象可知,慢車12h行駛的路程為900km,所以慢車的速度為(km/h);當(dāng)慢車行駛4h時(shí),慢車和快車相遇,兩車行駛的路程之和為900km,所以慢車和快車行駛的速度之和為,所以快車的速度為150km/h.……6

(4)根據(jù)題意,快車行駛900km到過乙地,所以快車行駛到過乙地,此時(shí)兩車之間的距離為6×75=450(km),所以點(diǎn)C的坐標(biāo)為(6,450).

  設(shè)線段BC所表示的yx之間的函數(shù)關(guān)系式為y=kx+b,把(4,0),(6,450)代入得  

【解析】略

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ACABCD的一條對角線,過AC中點(diǎn)O的直線分別交AD,BC于點(diǎn)E,F

1)求證:AE=CF;

2)連接AF,CE

①當(dāng)EFAC滿足條件 時(shí),四邊形AFCE是菱形;

②若AB=1,BC=2B=60°,則四邊形AFCE為矩形時(shí),EF的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC的內(nèi)切圓⊙O與AB、BC、CA分別相切于點(diǎn)D、E、F,且∠ACB=90°,AB=5,BC=3,點(diǎn)P在射線AC上運(yùn)動(dòng),過點(diǎn)P作PH⊥AB,垂足為H.
(1)直接寫出線段AD及⊙O半徑的長;
(2)設(shè)PH=x,PC=y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)PH與⊙O相切時(shí),求相應(yīng)的y值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果零上2℃記作+2℃,那么零下3℃記作

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是( )
A.a2a3=a6
B.(﹣y23=y6
C.(m2n)3=m5n3
D.﹣2x2+5x2=3x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=kx+b經(jīng)過點(diǎn)B1,4),且與直線y=-x-11平行

1)求直線AB的解析式并求出點(diǎn)C的坐標(biāo);

2)根據(jù)圖象,寫出關(guān)于x的不等式02x﹣4kx+b的解集;

3)現(xiàn)有一點(diǎn)P在直線AB過點(diǎn)PPQy軸交直線y=2x-4于點(diǎn)Q,C點(diǎn)到線段PQ的距離為1求點(diǎn)P的坐標(biāo)并直接寫出線段PQ的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面說法正確的是 (
A.絕對值最小的數(shù)是0
B.絕對值相等的兩個(gè)數(shù)相等
C.﹣a一定是負(fù)數(shù)
D.有理數(shù)的絕對值一定是正數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點(diǎn).

(1)求這個(gè)二次函數(shù)的解析式;

(2)在這條拋物線的對稱軸右邊的圖象上有一點(diǎn)B,使銳角△AOB的面積等于3.求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1先化簡,再求值:aa-2b+a+b2,其中a=-1,b=;

2)若x2-5x=3,求(x-1)(2x-1-x+12+1的值.

【答案】1原式= 2a2+b2=2+2=4;(2原式=4.

【解析】試題分析:(1)利用完全平方公式展開,化簡,代入求值. (2) 利用完全平方公式展開,化簡,整體代入求值.

:(1原式=a2-2ab+a2+2ab+b2=2a2+b2.

當(dāng)a=-1b=時(shí),原式=2+2=4.

2原式=2x2-3x+1-x2+2x+1+1=x2-5x+1=3+1=4.

型】解答
結(jié)束】
22

【題目】已知化簡(x2+px+8)(x2-3x+q)的結(jié)果中不含x2項(xiàng)和x3項(xiàng).

1)求p,q的值.

2x2-2px+3q是否是完全平方式?如果是,請將其分解因式;如果不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案