年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線的頂點(diǎn)在x軸上,且與y軸交于A點(diǎn). 直線經(jīng)過A、B兩點(diǎn),點(diǎn)B的坐標(biāo)為(3,4).
(1)求拋物線的解析式,并判斷點(diǎn)B是否在拋物線上;
(2)如果點(diǎn)B在拋物線上,P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過P作x軸的垂線與這個(gè)二次函數(shù)的圖象交于點(diǎn)E,設(shè)線段PE的長為h ,點(diǎn)P的橫坐標(biāo)為x.當(dāng)x為何值時(shí),h取得最大值,求出這時(shí)的h值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
閱讀下面材料:
定義:與圓的所有切線和割線都有公共點(diǎn)的幾何圖形叫做這個(gè)圓的關(guān)聯(lián)圖形.
問題:⊙O的半徑為1,畫一個(gè)⊙O的關(guān)聯(lián)圖形.
參考小明的發(fā)現(xiàn),解決問題:
(1)在下列幾何圖形中,⊙O的關(guān)聯(lián)圖形是 (填序號(hào));
① ⊙O的外切正多邊形
② ⊙O的內(nèi)接正多邊形
③ ⊙O的一個(gè)半徑大于1的同心圓
(2)若圖形G是⊙O的關(guān)聯(lián)圖形,并且它是封閉的,則圖形G的周長的最小值是____;
(3)在圖2中,當(dāng)⊙O的關(guān)聯(lián)圖形 的弧長最小時(shí),經(jīng)過D,E兩點(diǎn)的直線為y =__;
(4)請(qǐng)你在備用圖中畫出一個(gè)⊙O的關(guān)聯(lián)圖形,所畫圖形的長度l小于(2)中圖形G的周長的最小值,并寫出l的值(直接畫出圖形,不寫作法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點(diǎn)A1、A2 、A3 、…,點(diǎn)B1、B2 、B3 、…,分別在射線OM、ON上,A1B1∥A2B2∥A3B3∥A4B4∥….如果A1B1=2,A1A2=2OA1,A2A3=3OA1,A3A 4=4OA1,….
那么A2B2= ,AnBn= .(n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
操作與探究
我們知道:過任意一個(gè)三角形的三個(gè)頂點(diǎn)能作一個(gè)圓,探究過四邊形四個(gè)頂點(diǎn)作圓的條件。
(1)分別測量下面各四邊形的內(nèi)角,如果過某個(gè)四邊形的四個(gè)頂點(diǎn)能一個(gè)圓,那么其相對(duì)的兩個(gè)角之間有什么關(guān)系?證明你的發(fā)現(xiàn).
(2) 如果過某個(gè)四邊形的四個(gè)頂點(diǎn)不能一個(gè)圓,那么其相對(duì)的兩個(gè)角之間有上面的關(guān)系嗎?試結(jié)合下面的兩個(gè)圖說明其中的道理.(提示:考慮)
由上面的探究,試歸納出判定過四邊形的四個(gè)頂點(diǎn)能作一個(gè)圓的條件.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com