閱讀下面材料:

定義:與圓的所有切線和割線都有公共點的幾何圖形叫做這個圓的關(guān)聯(lián)圖形.

問題:⊙O的半徑為1,畫一個⊙O的關(guān)聯(lián)圖形.


在解決這個問題時,小明以O為原點建立平面直角坐標(biāo)系xOy進行探究,他發(fā)現(xiàn)能畫出很多⊙O的關(guān)聯(lián)圖形,例如:⊙O本身和圖1中的△ABC(它們都是封閉的圖形),以及圖2中以O為圓心的     (它是非封閉的圖形),它們都是⊙O關(guān)聯(lián)圖形.而圖2中以P,Q為端點的一條曲線就不是⊙O的關(guān)聯(lián)圖形.

參考小明的發(fā)現(xiàn),解決問題:

(1)在下列幾何圖形中,⊙O的關(guān)聯(lián)圖形是        (填序號);

① ⊙O的外切正多邊形

② ⊙O的內(nèi)接正多邊形

③ ⊙O的一個半徑大于1的同心圓

(2)若圖形G是⊙O的關(guān)聯(lián)圖形,并且它是封閉的,則圖形G的周長的最小值是____;

(3)在圖2中,當(dāng)⊙O的關(guān)聯(lián)圖形      的弧長最小時,經(jīng)過D,E兩點的直線為y =__;

(4)請你在備用圖中畫出一個⊙O的關(guān)聯(lián)圖形,所畫圖形的長度l小于(2)中圖形G的周長的最小值,并寫出l的值(直接畫出圖形,不寫作法).


解:(1)①③;

(2)

(3);

(4)答案不唯一,所畫圖形是非封閉的,長度l滿足l

例如:在圖1中l

在圖2中l


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,將一張矩形紙片沿對角線剪開得到兩個直角三角形紙片,將這兩個直角三角形紙片通過圖形變換構(gòu)成以下四個圖形,這四個圖形中是中心對圖形的是(    ) 

 

 


A              B               C               D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知二次函數(shù)y1=ax2bx-3的圖象經(jīng)過點A(2,-3),B(-1,0),與y軸交于點C,與x軸另一交點交于點D.

(1)求二次函數(shù)的解析式;

(2)求點C、點D的坐標(biāo);

(3)若一條直線y2,經(jīng)過C、D兩點,請直接寫出y1y2時,的取值范圍.

x k b

1 . c o m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


把拋物線向右平移1個單位,再向下平移3個單位,得到拋物線   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,為了估算某河的寬度,在河對岸邊選定一個目標(biāo)點A,在近岸取點B,CD,使得ABBD,∠ACB=45°,∠ADB=30°,并且點BC,D在同一條直線上.若測得CD=30米,求河寬AB(結(jié)果精確到1米,取1.73,取1.41).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在中,、分別是、邊上的點,且,如果,那么的值為(       )

A.        B.        C.       D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 如圖(1), 為矩形上一點,點從點沿折線運動到點時停止,點從點沿運動到點時停止,它們運動的速度都是.如果點同時開始運動,設(shè)運動時間為的面積為,已知的函數(shù)關(guān)系的圖象如圖(2)所示,那么下列結(jié)論正確的是(     )

A.      B. 時,

C.    D. 當(dāng)時,是等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


的相反數(shù)是

A. 3            B.           C.          D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知二次函數(shù).

(1) 求頂點坐標(biāo)和對稱軸方程;

(2)求該函數(shù)圖象與x標(biāo)軸的交點坐標(biāo);

(3)指出x為何值時,;  當(dāng)x為何值時,.

查看答案和解析>>

同步練習(xí)冊答案