如圖,以AB為直徑的⊙O與直線CD相切于點E,且ACCD,BDCD,AC=8 cm,BD=2 cm,則四邊形ACDB的面積為______.

AC交⊙OF,連結BF

∵  AB為⊙O的直徑,

∴  ∠AFB=90°.

連結OE,則OECD

∴  ACOEBD

∵  點OAB的中點,

∴  ECD的中點.

∴  OEBDAC)=(8+2)=5(cm).

∴  AB=2×5=10(cm).

RtBFA中,AFCABD=8-2=6(cm),AB=10 cm,

∴  BF=8(cm).

∴  四邊形ACDB的面積為

(2+8)·8=40(cm2).

【答案】40 cm2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

10、如圖,以AB為直徑的半圓O上有兩點D、E,ED與BA的延長線交于點C,且有DC=OE,若∠C=20°,則∠EOB的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,以AB為直徑的半圓O上有一點C,過A點作半圓的切線交BC的延長線于點D.
(1)求證:△ADC∽△BDA;
(2)過O點作AC的平行線OF分別交BC,
BC
于E、F兩點,若BC=2
3
,EF=1,求
AC
的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,以AB為直徑的⊙O經過點P,C是⊙O上一點,連接PC交AB于點E,且∠ACP=60°,PA=PD.
(1)試判斷PD與⊙O的位置關系,并說明理由;
(2)若
BC
AC
=1:2,求AE:EB:BD的值(請你直接寫出結果);
(3)若點C是弧AB的中點,已知AB=4,求CE•CP的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•成都一模)如圖,以AB為直徑的⊙O是△ADC的外接圓,過點O作PO⊥AB,交AC于點E,PC的延長線交AB的延長線于點F,∠PEC=∠PCE.若△ADC是邊長為1的等邊三角形,則PC的長=
1
3
1
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,以AB為直徑的⊙O與AD、DC、BC均相切,若AB=BC=4,則OD的長度為( 。

查看答案和解析>>

同步練習冊答案