【題目】如圖,在ABC中,點D、E、F分別是邊AB、AC、BC的中點,要判定四邊形DBFE是菱形,下列所添加條件不正確的是(  )

A. AB=AC B. AB=BC C. BE平分∠ABC D. EF=CF

【答案】A

【解析】

AB=BC時,四邊形DBFE是菱形.根據(jù)三角形中位線定理證明即可;當BE平分∠ABC時,可證BD=DE,可得四邊形DBFE是菱形,當EF=FC,可證EF=BF,可得四邊形DBFE是菱形,由此即可判斷;

AB=BC時,四邊形DBFE是菱形;

理由:∵點D、E、F分別是邊AB、AC、BC的中點,

DEBC,EFAB,

∴四邊形DBFE是平行四邊形,

DE=BC,EF=AB,

DE=EF,

∴四邊形DBFE是菱形.

B正確,不符合題意,

BE平分∠ABC時,可證BD=DE,可得四邊形DBFE是菱形,

EF=FC,可證EF=BF,可得四邊形DBFE是菱形,

C、D不符合題意,

故選A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線 與x軸相交于點A、B,與y軸相交于點C,拋物線對稱軸與x軸相交于點M,

(1)求△ABC的面積;
(2)若p是x軸上方的拋物線上的一個動點,求點P到直線BC的距離的最大值;
(3)若點P在拋物線上運動(點P異于點A),當∠PCB=∠BCA時,求直線PC的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學活動﹣旋轉(zhuǎn)變換
(1)如圖①,在△ABC中,∠ABC=130°,將△ABC繞點C逆時針旋轉(zhuǎn)50°,得到△A′B′C,連接BB′,求∠A′B′B的大;
(2)如圖②,在△ABC中,∠ABC=150°,AB=3,BC=5,將△ABC繞點C逆時針旋轉(zhuǎn)60°得到△A′B′C,連接BB′,以A′為圓心,A′B′長為半徑作圓. (Ⅰ)猜想:直線BB′與⊙A′的位置關(guān)系,并證明你的結(jié)論;
(Ⅱ)連接A′B,求線段A′B的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(3,0),B(0,4),則點B100的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點,且PA=6,PB=8,PC=10,將△APB繞點B逆時針旋轉(zhuǎn)一定角度后,可得到△CQB.
(1)求點P與點Q之間的距離;
(2)求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知五邊形ABCDE 是⊙O 的內(nèi)接正五邊形,且⊙O 的半徑為1.則圖中陰影部分的面積是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,過點B(6,0)的直線AB與直線OA相交于點A(4,2),動點M在y軸上運動.

(1)求直線AB的函數(shù)解析式;

(2)動點M在y軸上運動,使MA+MB的值最小,求點M的坐標;

(3)在y軸的負半軸上是否存在點M,使△ABM是以AB為直角邊的直角三角形?如果存在,求出點M的坐標;如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,,AE平分,,交AC延長線于F,且垂足為E,則下列結(jié)論:;,;其中正確的結(jié)論有______填寫序號

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形紙片ABCD折疊,使點D與點B重合,點C落在處,折痕為EF,若,則的周長之和為  

A. 3 B. 4 C. 6 D. 8

查看答案和解析>>

同步練習冊答案