【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點三角形ABC(頂點是網(wǎng)格線的交點)

1)先將△ABC豎直向上平移5個單位,再水平向右平移4個單位得到△A1B1C1,請畫出△A1B1C1;

2)將△A1B1C1B1點順時針旋轉90°,得△A2B1C2,請畫出△A2B1C2;

3)求線段B1C1變換到B1C2的過程中掃過區(qū)域的面積.

【答案】1)作圖見解析;(2)作圖見解析;(3

【解析】試題分析:1)直接利用平移的性質得出對應點位置進而得出答案;

2)直接利用旋轉的性質進而得出對應點位置,進而得出答案;

3)首先得出圓心角以及半徑,再利用扇形面積公式直接計算得出答案.

1)如圖所示:A1B1C1,即為所求;

2)如圖所示:A2B1C2,即為所求;

3)線段B1C1變換到B1C2的過程中掃過區(qū)域的面積為: =

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】向陽中學數(shù)學興趣小組對關于x的方程(m+1+m2x1=0提出了下列問題:

1)是否存在m的值,使方程為一元二次方程?若存在,求出m的值,并解此方程;

2)是否存在m的值,使方程為一元一次方程?若存在,求出m的值,并解此方程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】八(1)班同學為了解2015年某小區(qū)家庭月均用水情況,隨機調查了該小區(qū)部分家庭,并將調查數(shù)據(jù)進行如下整理,

月均用水量 (t)

頻數(shù)(戶)

頻率

6

0.12

m

0.24

16

0.32

10

0.20

4

n

2

0.04

請解答以下問題:

(1)這里采用的調查方式是    (填“普查”或“抽樣調查”),樣本容量是    

(2)填空: , 把頻數(shù)分布直方圖補充完整;

(3)若將月均用水量的頻數(shù)繪成扇形統(tǒng)計圖,則月均用水量“”的圓心角的度數(shù)是    ;

(4)若該小區(qū)有1000戶家庭,求該小區(qū)月均用水量超過10t的家庭大約有多少戶?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C是線段AB上一點,ACDBCE都是等邊三角形,連結AE,BD,設AECD于點F.

(1)求證:ACE≌△DCB;

(2)求證:ADF∽△BAD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某一工程,在工程招標時,接到甲、乙兩個工程隊的投標書.施工一天,需付甲工程隊工程款1.2萬元,乙工程隊工程款0.5萬元.工程領導小組根據(jù)甲、乙兩隊的投標書測算,有如下方案:①甲隊單獨完成這項工程剛好如期完成;②乙隊單獨完成這項工程要比規(guī)定日期多用6天;③若甲、乙兩隊合做3天,余下的工程由乙隊單獨做也正好如期完成.試問:

1兩隊單獨做各要幾天完成?

2在不耽誤工期的前提下,你覺得哪一種施工方案最節(jié)省工程款?請說明理.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某鄉(xiāng)村距城市50km,甲騎自行車從鄉(xiāng)村出發(fā)進城,出發(fā)1小時30分后,乙騎摩托車也從鄉(xiāng)村出發(fā)進城,結果比甲先到1小時,已知乙的速度是甲的2.5倍,求甲、乙兩人的速度。

【答案】甲速12km/h,乙速30km/h.

【解析】試題分析:設甲的速度是則乙的速度是甲、乙所用時間分別為: 小時、小時;根據(jù)題意可得甲比乙多用2.5小時,從而可得關于的方程,解方程即可解答此題;注意,最后要結合題意驗根.

試題解析:設甲的速度是則乙的速度是 根據(jù)題意列方程,

整理,

解得

經(jīng)檢驗, 是原方程的解.

:甲的速度是12km/h,乙的速度是30km/h.

型】解答
束】
24

【題目】已知的值 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】補全下列各題解題過程.

如圖,EF∥AD,∠1 = ∠2,∠BAC = 70°,求 ∠AGD 的度數(shù).

:∵EF∥AD 已知

∴∠2 = ( )

∵∠1=∠2 ( )

∴∠1=∠3 ( )

∴AB∥ ( )

∴∠BAC + = 180°( )

∵∠BAC = 70°(已知

∴∠AGD = _ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC的頂點坐標為A2,3B3,1C1,2,以坐標原點O為旋轉中心,順時針旋轉90°,得到ABC,點B、C分別是點B、C的對應點.

1求過點B的反比例函數(shù)解析式;

2求線段CC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點E,F(xiàn)分別是BC,DC上的一個動點,以EF為對稱軸折疊△CEF,使點C的對稱點G落在AD上,若AB=3,BC=5,則CF的取值范圍為

查看答案和解析>>

同步練習冊答案