某農(nóng)莊計劃在30畝空地上全部種植蔬菜和水果,菜農(nóng)小張和果農(nóng)小李分別承包了種植蔬菜和水果的任務(wù).小張種植每畝蔬菜的工資y(元)與種植面積m(畝)之間的函數(shù)如圖①所示,小李種植水果所得報酬z(元)與種植面積n(畝)之間函數(shù)關(guān)系如圖②所示.
(1)如果種植蔬菜20畝,則小張種植每畝蔬菜的工資是 元,小張應(yīng)得的工資總額是 元,此時,小李種植水果 畝,小李應(yīng)得的報酬是 元;
(2)當(dāng)10<n≤30時,求z與n之間的函數(shù)關(guān)系式;
(3)設(shè)農(nóng)莊支付給小張和小李的總費用為w(元),當(dāng)10<m≤30時,求w與m之間的函數(shù)關(guān)系式.
(1)140;2800;10;1500(2)z=120n+300(10<n≤30)(3)
【解析】解:(1)140;2800;10;1500。
(2)當(dāng)10<n≤30時,設(shè)z=kn+b(k≠0),
∵函數(shù)圖象經(jīng)過點(10,1500),(30,3900),
∴,解得。
∴當(dāng)10<n≤30時, z與n之間的函數(shù)關(guān)系式為z=120n+300(10<n≤30)。
(3)當(dāng)10<m≤30時,設(shè)y=k1m+b1,
∵函數(shù)圖象經(jīng)過點(10,160),(30,120),
∴,解得。
∴。
∵m+n=30,∴n=30-m。
∴①當(dāng)10<m≤20時,10<n≤20,
。
②當(dāng)20<m≤30時,0<n≤10,
。
∴w與m之間的函數(shù)關(guān)系式為。
(1)根據(jù)圖象數(shù)據(jù)解答即可:
由圖可知,如果種植蔬菜20畝,則小張種植每畝蔬菜的工資是(160+120)=140元,小張應(yīng)得的工資總額是:140×20=2800元。此時,小李種植水果:30﹣20=10畝,小李應(yīng)得的報酬是1500元。
(2)設(shè)z=kn+b(k≠0),然后利用待定系數(shù)法求一次函數(shù)解析式即可。
(3)先求出20<m≤30時y與m的函數(shù)關(guān)系式,再分①10<m≤20時,10<m≤20;②20<m≤30時,0<n≤10兩種情況,根據(jù)總費用等于兩人的費用之和列式整理即可得解。
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某農(nóng)莊計劃在30畝空地上全部種植蔬菜和水果,菜農(nóng)小張和果農(nóng)小李分別承包了種植蔬菜和水果的任務(wù).小張種植每畝蔬菜的工資y(元)與種植面積m(畝)之間的函數(shù)如圖①所示,小李種植水果所得報酬z(元)與種植面積n(畝)之間函數(shù)關(guān)系如圖②所示.
(1)如果種植蔬菜20畝,則小張種植每畝蔬菜的工資是 元,小張應(yīng)得的工資總額是 元,此時,小李種植水果 畝,小李應(yīng)得的報酬是 元;
(2)當(dāng)10<n≤30時,求z與n之間的函數(shù)關(guān)系式;
(3)設(shè)農(nóng)莊支付給小張和小李的總費用為w(元),當(dāng)10<m≤30時,求w與m之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(浙江湖州卷)數(shù)學(xué)(帶解析) 題型:解答題
某農(nóng)莊計劃在30畝空地上全部種植蔬菜和水果,菜農(nóng)小張和果農(nóng)小李分別承包了種植蔬菜和水果的任務(wù).小張種植每畝蔬菜的工資y(元)與種植面積m(畝)之間的函數(shù)如圖①所示,小李種植水果所得報酬z(元)與種植面積n(畝)之間函數(shù)關(guān)系如圖②所示.
(1)如果種植蔬菜20畝,則小張種植每畝蔬菜的工資是 元,小張應(yīng)得的工資總額是 元,此時,小李種植水果 畝,小李應(yīng)得的報酬是 元;
(2)當(dāng)10<n≤30時,求z與n之間的函數(shù)關(guān)系式;
(3)設(shè)農(nóng)莊支付給小張和小李的總費用為w(元),當(dāng)10<m≤30時,求w與m之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年浙江省湖州市中考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com