精英家教網 > 初中數學 > 題目詳情

【題目】冰封超市購進一批運動服,按進價提高40%后標價,為了讓利于民,增加銷量,超市決定打八折出售,這時每套運動服的售價為140.

(1)求每套運動服的進價?

(2)超市賣出一半后,正好趕上雙十一促銷,商店決定將剩下的運動服每3400元的價格出售,很快銷售一空,這批運動服超市共獲利14000元,求該超市共購進多少套運動服?

【答案】(1)每套運動服的進價為125元.(2)該超市共購進1200套運動服.

【解析】

(1)設每套運動服的進價是x元.進價×(1+40%)×八折=售價;

(2)設該超市共購進m套運動服,根據“商店決定將剩下的運動服每3400元的價格出售,很快銷售一空,這批運動服超市共獲利14000元”列出方程并解答.

解:(1)設每套運動服的進價為x元

(1+40%)×80%x=140

∴ x=125

答:每套運動服的進價為125元.

(2)設該超市共購進m套運動服,

(140-125)×+(-125)×=14000

∴m=1200

答:該超市共購進1200套運動服.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】為響應“低碳生活”的號召,李明決定每天騎自行車上學,有一天李明騎了1000米后,自行車發(fā)生了故障,修車耽誤了5分鐘,車修好后李明繼續(xù)騎行,用了8分鐘騎行了剩余的800米,到達學校(假設在騎車過程中勻速行駛).若設他從家開始去學校的時間為t(分鐘),離家的路程為y(千米),則y與t(15<t≤23)的函數關系為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,AB,AC的垂直平分線分別交BCD,E兩點,垂足分別是M,N.

(1)若△ADE的周長是10,求BC的長;

(2)若∠BAC=100°,求∠DAE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖MNPQ,點A、B分別在MN、PQ上,∠ABP=80°,射線BC平分∠ABP,且∠CAM=25°,則∠ACB的度數為__________________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)在平面直角坐標系中,作出下列各點,A(-3,4), B(-3,-2),O(0,0),并把各點連起來.

(2)畫出ABO先向下平移2個單位,再向右平移4 個單位得到的圖形A1B1o1,并直接寫出A1坐標

(3) 直接寫出三角形ABO的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A在雙曲線y= 上,點B在雙曲線y= (k≠0)上,AB∥x軸,過點A作AD⊥x軸于D.連接OB,與AD相交于點C,若AC=2CD,則k的值為(
A.6
B.9
C.10
D.12

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,AB=AC=5,BC=6,ADBC邊上的中線且AD=4,AD上的動點,AC邊上的動點,則的最小值是( ).

A. 6 B. 4 C. D. 不存在最小值

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形OABC的頂點A、C坐標分別是(8,0),(0,4),反比例函數y= (x>0)的圖象過對角線的交點P并且與AB、BC分別交于D、E兩點,連接OD、OE、DE,則△ODE的面積為(
A.14
B.12
C.15
D.8

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某地上網有兩種收費方式,用戶可以任選其一:

(A)記時制:2.8/小時,

(B)包月制:16/月.此外,每一種上網方式都加收通訊費1.2/小時.

(1)某用戶上網20小時,選用哪種上網方式比較合算?

(2)當上網時間在什么小時時,兩種上網費用一樣多?

查看答案和解析>>

同步練習冊答案