已知:在△ABC中,AB=2BC,∠ABC=60°
(1)如圖1,求證:∠BAC=30°;
(2)分別以AB、AC為邊,在△ABC外作等邊三角形ABD和等邊三角形ACE,聯(lián)結(jié)DE,交AB于點(diǎn)F如圖2.求證:DF=EF.
作業(yè)寶

(1)證明:如圖1,取AB中點(diǎn)D,連結(jié)CD,則AB=2BD.
∵AB=2BC,
∴BD=BC.
又∵∠ABC=60°,
∴△BCD為等邊三角形,
∴CD=BD,∠BDC=60°,
∴AD=CD,
∴∠A=∠ACD,
又∵∠BDC=∠A+∠ACD=2∠A=60°,
∴∠BAC=30°;

(2)證明:如圖2,作DG∥AE,交AB于點(diǎn)G,
由∠EAC=60°,∠CAB=30°得:∠FAE=∠EAC+∠CAB=90°,
∴∠DGF=∠FAE=90°,
又∵∠ACB=90°,∠CAB=30°,
∴∠ABC=60°,
又∵△ABD為等邊三角形,∠DBG=60°,DB=AB,
∴∠DBG=∠ABC=60°,
在△DGB和△ACB中,
∴△DGB≌△ACB(AAS),
∴DG=AC,
又∵△AEC為等邊三角形,∴AE=AC,
∴DG=AE,
在△DGF和△EAF中,,
∴△DGF≌△EAF(AAS),
∴DF=EF.
分析:(1)如圖1,取AB中點(diǎn)D,連結(jié)CD,則AB=2BD.易證△BCD為等邊三角形,則根據(jù)等邊三角形的性質(zhì)推知:CD=BD,∠BDC=60°;所以由等腰三角形的性質(zhì)和三角形外角定理得到∠BDC=∠A+∠ACD=2∠A=60°,即∠BAC=30°;
(2)如圖2,作DG∥AE,交AB于點(diǎn)G,由等邊三角形的∠EAC=60°,加上已知的∠CAB=30°得到∠FAE=90°,然后根據(jù)兩直線平行內(nèi)錯(cuò)角相等得到∠DGF=90°,再根據(jù)∠ACB=90°,∠CAB=30°,利用三角形的內(nèi)角和定理得到∠ABC=60°,由等邊三角形的性質(zhì)也得到∠DBG=60°,從而得到兩角的相等,再由DB=AB,利用“AAS”證得△DGB≌△ACB,根據(jù)全等三角形的對(duì)應(yīng)邊相等得到DG=AC,再由△AEC為等邊三角形得到AE=AC,等量代換可得DG=AE,加上一對(duì)對(duì)頂角的相等和一對(duì)直角的相等根據(jù)“AAS”證得△DGF≌△EAF,最后根據(jù)全等三角形的對(duì)應(yīng)邊相等即可得證.
點(diǎn)評(píng):此題考查了全等三角形的判定與性質(zhì),平行線的性質(zhì),以及等邊三角形的性質(zhì),其中全等三角形的判定方法為:SSS;SAS;ASA;AAS;HL(直角三角形判定全等的方法),常常利用三角形的全等來(lái)解決線段或角相等的問(wèn)題,在證明三角形全等時(shí),要注意公共角及公共邊,對(duì)頂角相等等隱含條件的運(yùn)用.第二問(wèn)作出輔助線構(gòu)造全等三角形是本問(wèn)的突破點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、已知:在△ABC中AB=AC,點(diǎn)D在CB的延長(zhǎng)線上.
求證:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(1)化簡(jiǎn):(a-
1
a
)÷
a2-2a+1
a

(2)已知:在△ABC中,AB=AC.
①設(shè)△ABC的周長(zhǎng)為7,BC=y,AB=x(2≤x≤3).寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;
②如圖,點(diǎn)D是線段BC上一點(diǎn),連接AD,若∠B=∠BAD,求證:△BAC∽△BDA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,已知,在△ABC中,∠ABC和∠ACB的平分線交于點(diǎn)M,ME∥AB交BC于點(diǎn)E,MF∥AC交BC于點(diǎn)F.求證:△MEF的周長(zhǎng)等于BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、已知,在△ABC中,AB=AC=x,BC=6,則腰長(zhǎng)x的取值范圍是
x>3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足為點(diǎn)E.∠B=38°,∠C=70°.
①求∠DAE的度數(shù);
②試寫(xiě)出∠DAE與∠B、∠C之間的一般等量關(guān)系式(只寫(xiě)結(jié)論)

查看答案和解析>>

同步練習(xí)冊(cè)答案