如圖23-2-1-1,△ABC與△ADE是成中心對稱的兩個圖形,點(diǎn)A是對稱中心,點(diǎn)B的對稱點(diǎn)為點(diǎn)____________,點(diǎn)C的對稱點(diǎn)為點(diǎn)____________,點(diǎn)A的對稱點(diǎn)為____________.

   圖23-2-1-1

答案:
解析:

思路解析:如果把一個圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說這兩個圖形成中心對稱.這個點(diǎn)叫做對稱中心,這兩個圖形中的對應(yīng)點(diǎn)叫做關(guān)于中心的對稱點(diǎn).

答案:D E A


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖23,已知拋物線軸相交于A、B兩點(diǎn),其對稱軸為直線,且與x軸交于點(diǎn)D,AO=1.
【小題1】填空:=_______。=_______,點(diǎn)B的坐標(biāo)為(_______,_______):
【小題2】若線段BC的垂直平分線EF交BC于點(diǎn)E,交軸于點(diǎn)F.求FC的長;
【小題3】探究:在拋物線的對稱軸上是否存在點(diǎn)P,使⊙P與軸、直線BC都相切?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

把兩個全等的直角三角板ABC和EFG疊放在一起,且使三角板EFG的直角頂點(diǎn)G與三角板ABC的斜邊中點(diǎn)O重合,其中∠B=∠F=30°,斜邊AB和EF的長均為4。
(1)當(dāng)EG⊥AC于點(diǎn)K,GF⊥BC于點(diǎn)H時,如圖23-1,求GH:GK的值.
(2)現(xiàn)將三角板EFG由圖23-1所示的位置繞O點(diǎn)沿逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角滿足條件:
0°<<30°,如圖23-2,EG交AC于點(diǎn)K,GF交BC于點(diǎn)H,GH:GK的值是否改變?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:11.2三角形全等的判定同步練習(xí)數(shù)學(xué)卷 題型:解答題

公園有一塊三角形的空地△ABC(如圖23),為了美化公園,公園管理處計劃栽種四種名貴花草,要求將空地△ABC劃分成形狀完全相同,面積相等的四塊.”為了解決這一問題,管理員張師傅準(zhǔn)備了一張三角形的紙片,描出各邊的中點(diǎn),然后將三角形ABC的各頂點(diǎn)疊到其對邊的中點(diǎn)上,結(jié)果發(fā)現(xiàn)折疊后所得到的三角形彼此完全重合.你能說明這種設(shè)計的正確性嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆河北省廊坊市安次區(qū)初三第一次模擬考試數(shù)學(xué)試題 題型:解答題

閱讀材料:如圖23—1,的周長為,面積為S,內(nèi)切圓的半徑為,探究與S、之間的關(guān)系.連結(jié),


,


解決問題

(1)利用探究的結(jié)論,計算邊長分別為5,12,13的三角形內(nèi)切圓半徑;
(2)若四邊形存在內(nèi)切圓(與各邊都相切的圓),如圖23—2且面積為,各邊長分別為,,試推導(dǎo)四邊形的內(nèi)切圓半徑公式;
(3)若一個邊形(為不小于3的整數(shù))存在內(nèi)切圓,且面積為,各邊長分別為,,,,,合理猜想其內(nèi)切圓半徑公式(不需說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省岳陽市初三上學(xué)期末數(shù)學(xué)卷 題型:解答題

把兩個全等的直角三角板ABC和EFG疊放在一起,且使三角板EFG的直角頂點(diǎn)G與三角板ABC的斜邊中點(diǎn)O重合,其中∠B=∠F=30°,斜邊AB和EF的長均為4。

(1)當(dāng)EG⊥AC于點(diǎn)K,GF⊥BC于點(diǎn)H時,如圖23-1,求GH:GK的值.

(2)現(xiàn)將三角板EFG由圖23-1所示的位置繞O點(diǎn)沿逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角滿足條件:

0°<<30°,如圖23-2,EG交AC于點(diǎn)K,GF交BC于點(diǎn)H,GH:GK的值是否改變?證明你的結(jié)論.

 

查看答案和解析>>

同步練習(xí)冊答案