如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求證:CE=AD;
(2)當D在AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.
(1)證明:∵DE⊥BC,
∴∠DFB=90°,
∵∠ACB=90°,
∴∠ACB=∠DFB,
∴AC∥DE,
∵MN∥AB,即CE∥AD,
∴四邊形ADEC是平行四邊形,
∴CE=AD;
(2)解:四邊形BECD是菱形,
理由是:∵D為AB中點,
∴AD=BD,
∵CE=AD,
∴BD=CE,
∵BD∥CE,
∴四邊形BECD是平行四邊形,
∵∠ACB=90°,D為AB中點,
∴CD=BD,
∴四邊形BECD是菱形;
(3)當∠A=45°時,四邊形B°ECD是正方形,理由是:
解:∵∠ACB=90°,∠A=45°,
∴∠ABC=∠A=45°,
∴AC=BC,
∵D為BA中點,
∴CD⊥AB,
∴∠CDB=90°,
∵四邊形BECD是菱形,
∴四邊形BECD是正方形,
即當∠A=45°時,四邊形BECD是正方形.
科目:初中數(shù)學 來源: 題型:
禁漁期間,我漁政船在A處發(fā)現(xiàn)正北方向B處有一艘可疑船只,測得A、B兩處距離為99海里,可疑船只正沿南偏東53°方向航行.我漁政船迅速沿北偏東27°方向前去攔截,2小時后剛好在C處將可疑船只攔截.求該可疑船只航行的速度.
(參考數(shù)據(jù):sin27°≈,cos27°≈,tan27°≈,sin53°≈,cos53°≈,tan53°≈)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
在同一時刻兩根木竿在太陽光下的影子如圖所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ的影子有一部分落在了墻上,PM=1.2m,MN=0.8m,則木竿PQ的長度為 m.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
現(xiàn)測得齊齊哈爾市扎龍自然保護區(qū)六月某5天的最高氣溫分別為27、30、27、32、34(單位:℃).這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是 ( )
A. 34、27 B.27、30 C.27 、34 D.30、27
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,四邊形ABCD是矩形,AB=6cm,BC=8cm,把矩形沿直線BD折疊,點C落在點E處,BE與AD相交于點F,連接AE.下列結(jié)論:①△FBD是等腰三角形;②四邊形ABDE是等腰梯形; ③圖中有6對全等三角形;④四邊形BCDF的周長為;⑤AE的長為cm.其中結(jié)論正確的個數(shù)為 ( )
A.2個 B.3個 C.4個 D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
某工廠計劃生產(chǎn)A、B兩種產(chǎn)品共60件,需購買甲、乙兩種材料.生產(chǎn)一件A產(chǎn)品需甲種材料4千克,乙種材料1千克;生產(chǎn)一件B產(chǎn)品需甲、乙兩種材料各3千克.經(jīng)測算,購買甲、乙兩種材料各1千克共需資金60元;購買甲種材料2千克和乙種材料3千克共需資金155元.
(1)甲、乙兩種材料每千克分別是多少元?
(2)現(xiàn)工廠用于購買甲、乙兩種材料的資金不超過9900元,且生產(chǎn)B產(chǎn)品不少于38件,問符合生產(chǎn)條件的生產(chǎn)方案由哪幾種?
(3)在(2)的條件下,若生產(chǎn)一件A產(chǎn)品需加工費40元,若生產(chǎn)一件B產(chǎn)品需加工費50元,應選擇哪種生產(chǎn)方案,使生產(chǎn)這60件產(chǎn)品的成本最低?
(成本=材料費+加工費)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com