【題目】如圖,已知二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,與y軸交于點P,頂點為C(1,﹣2).
(1)求此函數(shù)的關系式;
(2)作點C關于x軸的對稱點D,順次連接A,C,B,D.若在拋物線上存在點E,使直線PE將四邊形ACBD分成面積相等的兩個四邊形,求點E的坐標;
(3)在(2)的條件下,拋物線上是否存在一點F,使得△PEF是以P為直角頂點的直角三角形?若存在,求出點F的坐標及△PEF的面積;若不存在,請說明理由.
【答案】
(1)
解:∵y=x2+bx+c的頂點為(1,﹣2).
∴y=(x﹣1)2﹣2=x2﹣2x﹣1
(2)
解:設直線PE對應的函數(shù)關系式為y=kx+b,根據A,B關于對稱軸對稱,
可以得出AC=CB,AD=BD,點C關于x軸的對稱點D,
故AC=BC=AD=BD,
則四邊形ACBD是菱形,
故直線PE必過菱形ACBD的對稱中心M.
由P(0,﹣1),M(1,0),
得
從而得y=x﹣1,
設E(x,x﹣1)代入y=x2﹣2x﹣1得x﹣1=x2﹣2x﹣1,
解得x1=0,x2=3,
根據題意得點E(3,2)
(3)
解:假設存在這樣的點F,可設F(x,x2﹣2x﹣1),
過點F做FG⊥y軸,垂足為G點.
在Rt△POM和Rt△FGP中,
∵∠OMP+∠OPM=90°,∠FPG+∠OPM=90°,
∠OMP=∠FPG,
又∠MOP=∠PGF,
∴△POM∽△FGP
∴
∵OM=1,OP=1,
∴GP=GF,即﹣1﹣(x2﹣2x﹣1)=x,
解得x1=0,x2=1,
根據題意得F(1,﹣2)
以上各步均可逆,故點F(1,﹣2)即為所求,
S△PEF=S△MFP+S△MFE= 2×1 ×2×2=3.
【解析】【(1)將頂點坐標C(1,﹣2)代入y=x2+bx+c即可求得此二次函數(shù)的關系式;(2)先求出直線PM的解析式,然后與二次函數(shù)聯(lián)立即可解得點E的坐標;(3)根據三角形相似的性質先求出GP=GF,求出F點的坐標,進而求得△PEF的面積.
【考點精析】關于本題考查的二次函數(shù)的圖象和二次函數(shù)的性質,需要了解二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】下列四個命題:
①對角線互相垂直的平行四邊形是正方形;
② ,則m≥1;
③過弦的中點的直線必經過圓心;
④圓的切線垂直于經過切點的半徑;
⑤圓的兩條平行弦所夾的弧相等;
其中正確的命題有( )個.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在破殘的圓形殘片上,弦AB的垂直平分線交弧AB于點C,交弦AB于點D,已知AB=8 cm,CD=2 cm.求破殘的圓形殘片的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E,F分別是等邊△ABC中AC,AB邊上的中點,以AE為邊向外作等邊△ADE.
(1)求證:四邊形AFED是菱形;
(2)連接DC,若BC=10,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點D作⊙O的切線DF,交AC于點F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知方程 ,且關于x的不等式組 只有4個整數(shù)解,那么b的取值范圍是( )
A.﹣1<b≤3
B.2<b≤3
C.8≤b<9
D.3≤b<4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在信息快速發(fā)展的社會,“信息消費”已成為人們生活的重要組成部分.某高校組織課外小組在鄭州市的一個社區(qū)隨機抽取部分家庭,調查每月用于信息消費的金額,根據數(shù)據整理成如圖所示的不完整統(tǒng)計表和統(tǒng)計圖.已知A,B兩組戶數(shù)頻數(shù)直方圖的高度比為1:5.
月信息消費額分組統(tǒng)計表
組別 | 消費額(元) |
A | 10≤x<100 |
B | 100≤x<200 |
C | 20≤x<300 |
D | 300≤x<400 |
E | x≥400 |
請結合圖表中相關數(shù)據解答下列問題:
(1)這次接受調查的有戶;
(2)在扇形統(tǒng)計圖中,“E”所對應的圓心角的度數(shù)是;
(3)請你補全頻數(shù)直方圖;
(4)若該社區(qū)有2000戶住戶,請估計月信息消費額不少于200元的戶數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市民營經濟持續(xù)發(fā)展,2015年城鎮(zhèn)民營企業(yè)就業(yè)人數(shù)突破20萬.為了解城鎮(zhèn)民營企業(yè)員工每月的收入狀況,統(tǒng)計局對全市城鎮(zhèn)民營企業(yè)員工2015年月平均收入隨機抽樣調查,將抽樣的數(shù)據按“2000元以內”、“2000元~4000元”、“4000元~6000元”和“6000元以上”分為四組,進行整理,分別用A,B,C,D表示,得到下列兩幅不完整的統(tǒng)計圖.
由圖中所給出的信息解答下列問題:
(1)本次抽樣調查的員工有人,在扇形統(tǒng)計圖中x的值為 , 表示“月平均收入在2000元以內”的部分所對應扇形的圓心角的度數(shù)是;
(2)將不完整的條形圖補充完整,并估計我市2015年城鎮(zhèn)民營企業(yè)20萬員工中,每月的收入在“2000元~4000元”的約多少人?
(3)統(tǒng)計局根據抽樣數(shù)據計算得到,2016年我市城鎮(zhèn)民營企業(yè)員工月平均收入為4872元,請你結合上述統(tǒng)計的數(shù)據,談一談用平均數(shù)反映月收入情況是否合理?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com