【題目】已知方程 ,且關(guān)于x的不等式組 只有4個(gè)整數(shù)解,那么b的取值范圍是(
A.﹣1<b≤3
B.2<b≤3
C.8≤b<9
D.3≤b<4

【答案】D
【解析】解:分式方程去分母,得:3﹣a﹣(a﹣4)=9,
解得:a=﹣1,
經(jīng)檢驗(yàn):a=﹣1是原分式方程的根,
故不等式組的解集為:﹣1<x≤b,
∵不等式組只有4個(gè)整數(shù)解,
∴3≤b<4,
故選:D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解分式方程的解(分式方程無(wú)解(轉(zhuǎn)化成整式方程來(lái)解,產(chǎn)生了增根;轉(zhuǎn)化的整式方程無(wú)解);解的正負(fù)情況:先化為整式方程,求整式方程的解),還要掌握一元一次不等式組的整數(shù)解(使不等式組中的每個(gè)不等式都成立的未知數(shù)的值叫不等式組的解,一個(gè)不等式組的所有的解組成的集合,叫這個(gè)不等式組的解集(簡(jiǎn)稱不等式組的解))的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,BC=1,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿路線B→C→D作勻速運(yùn)動(dòng),那么△ABP的面積y與點(diǎn)P運(yùn)動(dòng)的路程x之間的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O的半徑為5,且點(diǎn)O在直線l上,小明用一個(gè)三角板學(xué)具(∠ABC=90°,AB=BC=8)做數(shù)學(xué)實(shí)驗(yàn):
(1)如圖①,若A、B兩點(diǎn)在⊙O上滑動(dòng),直線BC分別與⊙O,L相交于點(diǎn)D,E.
①求BD的長(zhǎng);②當(dāng)OE=6時(shí),求BE的長(zhǎng);

(2)如圖②,當(dāng)點(diǎn)B在直線l上,點(diǎn)A在⊙O上,BC與⊙O相切于點(diǎn)P時(shí),則切線長(zhǎng)PB=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)P,頂點(diǎn)為C(1,﹣2).

(1)求此函數(shù)的關(guān)系式;
(2)作點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)D,順次連接A,C,B,D.若在拋物線上存在點(diǎn)E,使直線PE將四邊形ACBD分成面積相等的兩個(gè)四邊形,求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,拋物線上是否存在一點(diǎn)F,使得△PEF是以P為直角頂點(diǎn)的直角三角形?若存在,求出點(diǎn)F的坐標(biāo)及△PEF的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一幢樓房AB背后有一臺(tái)階CD,臺(tái)階每層高0.2米,且AC=17.2米,設(shè)太陽(yáng)光線與水平地面的夾角為α,當(dāng)α=60°時(shí),測(cè)得樓房在地面上的影長(zhǎng)AE=10米,現(xiàn)有一只小貓睡在臺(tái)階的MN這層上曬太陽(yáng).( 取1.73)

(1)求樓房的高度約為多少米?
(2)過(guò)了一會(huì)兒,當(dāng)α=45°時(shí),問小貓能否還曬到太陽(yáng)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰△ABC中,AB=AC=5,△ABC的面積為10,則BC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A是直線l外一點(diǎn),在l上取兩點(diǎn)B,C,分別以A,C為圓心,BC,AB的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)D,分別連接AB,AD,CD,若∠ABC+∠ADC=120°,則∠A的度數(shù)是(

A.100°
B.110°
C.120°
D.125°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知某廣場(chǎng)菱形花壇ABCD的周長(zhǎng)是24米,∠BAD=60°,則花壇對(duì)角線AC的長(zhǎng)等于(
A.6
B.6米
C.3
D.3米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中, =a,點(diǎn)G,H分別在邊AB,DC上,且HA=HG,點(diǎn)E為AB邊上的一個(gè)動(dòng)點(diǎn),連接HE,把△AHE沿直線HE翻折得到△FHE.

(1)如圖1,當(dāng)DH=DA時(shí),填空:∠HGA=度;
(2)如圖1,當(dāng)DH=DA時(shí),若EF∥HG,求∠AHE的度數(shù),并求此時(shí)的最小值;
(3)如圖3,∠AEH=60°,EG=2BG,連接FG,交邊DC于點(diǎn)P,且FG⊥AB,G為垂足,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案