【題目】如圖,長方形ABOC中點A坐標(biāo)為(4,5),點Ex軸上一動點,連接AE,把∠B沿AE折疊,當(dāng)點B落在y軸上時點E的坐標(biāo)為_____

【答案】0)或(﹣60

【解析】

分兩種情況討論,由折疊的性質(zhì)可求AB'AB5,BEB'E,由勾股定理可求B'C5,OE的長,即可求解.

解:如圖,當(dāng)點EOB上,

A坐標(biāo)為(4,5),

∴AC4,AB5,

由折疊可得∴B'C3,

∴B'OOCB'C2,

∵B'E2B'O2+OE2,

4EO24+OE2,

∴OE,

E,0

若點EBO的延長線上,

∴B'C3,

∴B'OOC+B'C8,

∵B'E2B'O2+OE2,

4+EO264+OE2

∴OE6,

E(﹣60

故答案為:(,0)或(﹣6,0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,OEG的中點,∠EGC的平分線GH過點D,交BE于點H,連接OH,FHEGFH交于點M,對于下面四個結(jié)論:①GHBE;②BGEG;③△MFG為等腰三角形;④DEAB1:1,其中正確結(jié)論的序號為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關(guān).第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個求助沒有用(使用求助可以讓主持人去掉其中一題的一個錯誤選項).

(1)如果小明第一題不使用求助,那么小明答對第一道題的概率是  

(2)如果小明將求助留在第二題使用,請用樹狀圖或者列表來分析小明順利通關(guān)的概率.

(3)從概率的角度分析,你建議小明在第幾題使用求助.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數(shù)).

(1)求證:方程有兩個不相等的實數(shù)根;

(2)若方程的兩個實數(shù)根都是整數(shù),求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=kx+bk≠0)與拋物線y=ax2a≠0)交于A,B兩點,且點A的橫坐標(biāo)是-2,點B的橫坐標(biāo)是3,則以下結(jié)論:

拋物線y=ax2a≠0)的圖象的頂點一定是原點;

②x0時,直線y=kx+bk≠0)與拋物線y=ax2a≠0)的函數(shù)值都隨著x的增大而增大;

③AB的長度可以等于5;

④△OAB有可能成為等邊三角形;

當(dāng)-3x2時,ax2+kxb,

其中正確的結(jié)論是( )

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖平面直角坐標(biāo)系中,A點坐標(biāo)為(01),ABBC,∠ABC90°,CDx軸.

1)填空:B點坐標(biāo)為   ,C點坐標(biāo)為   

2)若點P是直線CD上第一象限上一點且△PAB的面積為6.5,求P點的坐標(biāo);

3)在(2)的條件下點Mx軸上線段OD之間的一動點,當(dāng)△PAM為等腰三角形時,直接寫出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,正比例函數(shù)的圖像與反比例函數(shù)的圖像都經(jīng)過點A2m).

(1)求反比例函數(shù)的解析式;

(2)B軸的上,且OA=BA,反比例函數(shù)圖像上有一點C,且∠ABC=90°,求點C坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游泳館推出了兩種收費方式.

方式一:顧客先購買會員卡,每張會員卡200元,僅限本人一年內(nèi)使用,憑卡游泳,每次游泳再付費30元.

方式二:顧客不購買會員卡,每次游泳付費40元.

設(shè)小亮在一年內(nèi)來此游泳館的次數(shù)為x次,選擇方式一的總費用為y1(元),選擇方式二的總費用為y2(元).

1)請分別寫出y1,y2x之間的函數(shù)表達(dá)式.

2)若小亮一年內(nèi)來此游泳館的次數(shù)為15次,選擇哪種方式比較劃算?

3)若小亮計劃拿出1400元用于在此游泳館游泳,采用哪種付費方式更劃算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料,完成(1-3)題

數(shù)學(xué)課上,老師出示了這樣一道題:如圖,△ABD和△ACE中,ABAD,ACAE,∠DAB=∠CAEα,連接DC、BE交于點F,過AAGDC于點G,探究線段FG、FE、FC之間的數(shù)量關(guān)系,并證明.

同學(xué)們經(jīng)過思考后,交流了自已的想法:

小明:通過觀察和度量,發(fā)現(xiàn)線段BE與線段DC相等.

小偉:通過觀察發(fā)現(xiàn),∠AFEα存在某種數(shù)量關(guān)系.

老師:通過構(gòu)造全等三角形,從而可以探究出線段FG、FEFC之間的數(shù)量關(guān)系.

1)求證:BECD;

2)求∠AFE的度數(shù)(用含α的式子表示);

3)探究線段FGFE、FC之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊答案