【題目】如圖,Rt△OAB的頂點(diǎn)A(﹣4,8)在拋物線y=ax2上,將Rt△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到△OCD,邊CD與該拋物線交于點(diǎn)P,則點(diǎn)P的坐標(biāo)為
【答案】(2 ,4)
【解析】解:∵Rt△OAB的頂點(diǎn)A(﹣4,8)在拋物線y=ax2上,
∴8=16a,解得a= ,
∴拋物線為y= x2 ,
∵點(diǎn)A(﹣4,8),
∴B(﹣4,0),
∴OB=4,
∵將Rt△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到△OCD,
∴D點(diǎn)在y軸上,且OD=OB=4,
∴D(0,4),
∵DC⊥OD,
∴DC∥x軸,
∴P點(diǎn)的縱坐標(biāo)為4,
代入y= x2 , 得4= x2 ,
解得x=±2 ,
∴P(2 ,4).
故答案為(2 ,4).
先根據(jù)待定系數(shù)法求得拋物線的解析式,然后根據(jù)題意求得D(0,4),且DC∥x軸,從而求得P的縱坐標(biāo)為4,代入求得的解析式即可求得P的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)(0,3),且當(dāng)x=1時(shí),y有最小值2.
(1)求a,b,c的值
(2)設(shè)二次函數(shù)y=k(2x+2)﹣(ax2+bx+c)(k為實(shí)數(shù)),它的圖象的頂點(diǎn)為D.
①當(dāng)k=1時(shí),求二次函數(shù)y=k(2x+2)﹣(ax2+bx+c)的圖象與x軸的交點(diǎn)坐標(biāo);
②請(qǐng)?jiān)诙魏瘮?shù)y=ax2+bx+c與y=k(2x+2)﹣(ax2+bx+c)的圖象上各找出一個(gè)點(diǎn)M,N,不論k取何值,這兩個(gè)點(diǎn)始終關(guān)于x軸對(duì)稱,直接寫出點(diǎn)M,N的坐標(biāo)(點(diǎn)M在點(diǎn)N的上方);
③過(guò)點(diǎn)M的一次函數(shù)y=﹣x+t的圖象與二次函數(shù)y=ax2+bx+c的圖象交于另一點(diǎn)P,當(dāng)k為何值時(shí),點(diǎn)D在∠NMP的平分線上?
④當(dāng)k取﹣2,﹣1,0,1,2時(shí),通過(guò)計(jì)算,得到對(duì)應(yīng)的拋物線y=k(2x+2)﹣(ax2+bx+c)的頂點(diǎn)分別為(﹣1,﹣6,),(0,﹣5),(1,﹣2),(2,3),(3,10),請(qǐng)問(wèn):頂點(diǎn)的橫、縱坐標(biāo)是變量嗎?縱坐標(biāo)是如何隨橫坐標(biāo)的變化而變化的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(8,1),B(0,﹣3),反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)A,動(dòng)直線x=t(0<t<8)與反比例函數(shù)的圖象交于點(diǎn)M,與直線AB交于點(diǎn)N.
(1)求k的值。
(2)求△BMN面積的最大值。
(3)若MA⊥AB,求t的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生參加社團(tuán)的情況,從2010年起,某市教育部門每年都從全市所有學(xué)生中隨機(jī)抽取2000名學(xué)生進(jìn)行調(diào)查,圖①、圖②是部分調(diào)查數(shù)據(jù)的統(tǒng)計(jì)圖(參加社團(tuán)的學(xué)生每人只能報(bào)一項(xiàng))根據(jù)統(tǒng)計(jì)圖提供的信息解決下列問(wèn)題:
(1)求圖②中“科技類”所在扇形的圓心角α的度數(shù)
(2)該市2012年抽取的學(xué)生中,參加體育類與理財(cái)類社團(tuán)的學(xué)生共有多少人?
(3)該市2014年共有50000名學(xué)生,請(qǐng)你估計(jì)該市2014年參加社團(tuán)的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑為2,△ABC是⊙O的內(nèi)接三角形,連接OB、OC.若∠BAC與∠BOC互補(bǔ),則弦BC的長(zhǎng)為( )
A.4
B.3
C.2
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某片果園有果樹(shù)80棵,現(xiàn)準(zhǔn)備多種一些果樹(shù)提高果園產(chǎn)量,但是如果多種樹(shù),那么樹(shù)之間的距離和每棵樹(shù)所受光照就會(huì)減少,單棵樹(shù)的產(chǎn)量隨之降低.若該果園每棵果樹(shù)產(chǎn)果y(千克),增種果樹(shù)x(棵),它們之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)在投入成本最低的情況下,增種果樹(shù)多少棵時(shí),果園可以收獲果實(shí)6750千克?
(3)當(dāng)增種果樹(shù)多少棵時(shí),果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是等腰三角形,頂角∠BAC=α(α<60°),D是BC邊上的一點(diǎn),連接AD,線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α到AE,過(guò)點(diǎn)E作BC的平行線,交AB于點(diǎn)F,連接DE,BE,DF.
(1)求證:BE=CD;
(2)若AD⊥BC,試判斷四邊形BDFE的形狀,并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對(duì)稱軸是直線x=﹣1,下列結(jié)論:
①abc<0;②2a+b=0;③a﹣b+c>0;④4a﹣2b+c<0
其中正確的是( )
A.①②
B.只有①
C.③④
D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半圓O的半徑OA=4,P是OA延長(zhǎng)線上一點(diǎn),線段OP的垂直平分線分別交OP、半圓O于B、C兩點(diǎn),射線PC交半圓O于點(diǎn)D.設(shè)PA=x,CD=y(tǒng),則能表示y與x的函數(shù)關(guān)系的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com