【題目】如圖,是的直徑,若,,以為邊作圓的內(nèi)接正多邊形,則這個正多邊形是________邊形.
【答案】6
【解析】
首先根據(jù)圓周角定理得出∠POQ=80°,進而利用等腰三角形的性質(zhì)得出∠OPQ=∠OQP,再由外角的性質(zhì)得出∠A+∠APO=∠POM=60°,即可得出△POM是等邊三角形,再由正六邊形的性質(zhì)得出答案.
如圖,連接QO,PO,∵QO=PO,∴∠OPQ=∠OQP,∵∠PMQ=40°,∴∠POQ=80°,
∴∠OPQ+∠OQP=180°80°=100°,∴∠OPQ=∠OQP=50°,∴∠A+∠APO=∠POM=10°+50°=60°,∵PO=OM,∴△POM是等邊三角形,∴PM=OP=OM,∴以PM為邊作圓的內(nèi)接正多邊形,則這個正多邊形是正六邊形.故答案為6.
科目:初中數(shù)學 來源: 題型:
【題目】某養(yǎng)豬專業(yè)戶利用一堵磚墻(長度足夠)圍成一個長方形豬欄,圍豬欄的柵欄一共長40m,設這個長方形的相鄰兩邊的長分別為x(m)和y(m).
(1)求y關(guān)于x的函數(shù)表達式和自變量的取值范圍;
(2)若長方形豬欄磚墻部分的長度為5m,求自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝店銷售一批襯衫,每件進價元,開始以每件元的價格銷售,每星期能賣出件,后來因庫存積壓,決定降價銷售,經(jīng)兩次降價后的每件售價元,每星期能賣出件.
已知兩次降價百分率相同,求每次降價的百分率;
聰明的店主在降價過程中發(fā)現(xiàn),適當?shù)慕祪r既可增加銷售又可增加收入,且每件襯衫售價每降低元,銷售會增加件,若店主想要每星期獲利元,應把售價定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,≌,≌,B,E,C在一條直線上下列結(jié)論:是的平分線;;;線段DE是的中線;其中正確的有 ()個.
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的中線,E,F分別是AD和AD延長線上的點,且DE=DF,連接BF,CE.下列說法:①△BDF≌△CDE;②CE=BF; ③BF∥CE;④△ABD和△ACD周長相等.其中正確的有___________(只填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利45元,為了擴大銷售、增加盈利盡快減少庫存,商場決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出4件,若商場平均每天盈利2100元,每件襯衫應降價多少元?請完成下列問題:
(1)未降價之前,某商場襯衫的總盈利為 元.
(2)降價后,設某商場每件襯衫應降價x元,則每件襯衫盈利 元,平均每天可售出 件(用含x的代數(shù)式進行表示)
(3)請列出方程,求出x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有10個數(shù)據(jù)x1,x2,…x10,已知它們的和為2018,當代數(shù)式(x﹣x1)2+(x﹣x2)2+…+(x﹣x10)2取得最小值時,x的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,動點P從B點出發(fā),沿B→C→D→A勻速運動,設點P運動的路程為x,△ABP的面積為y,圖象如圖2所示.
(1)當點P運動的路程x=4時,△ABP的面積為y= ;
(2)求:線段AB的長;
(3)求:梯形ABCD的面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列兩個三角形中,一定全等的是()
A. 兩個等邊三角形
B. 有一個角是,腰相等的兩個等腰三角形
C. 有一條邊相等,有一個內(nèi)角相等的兩個等腰三角形
D. 有一個角是,底相等的兩個等腰三角形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com