【題目】有10個數(shù)據(jù)x1,x2,…x10,已知它們的和為2018,當(dāng)代數(shù)式(x﹣x1)2+(x﹣x2)2+…+(x﹣x10)2取得最小值時,x的值為_____.
【答案】201.8.
【解析】
設(shè)y=(x﹣x1)2+(x﹣x2)2+…+(x﹣x10)2,整理后根據(jù)二次函數(shù)的性質(zhì)即可求解.
解:
∵x1+x2+…+x10=2018,
∴設(shè)y=(x﹣x1)2+(x﹣x2)2+…+(x﹣x10)2
=x2-2xx1+x12+x2-2xx2+x22+…+x2+2xx10+x102
=10 x2-2x(x1+x2 +…+x10)+( x12+ x22+…+x102)
=10 x2-2x×2018+( x12+ x22+…+x102)
=10 x2-4036x+( x12+ x22+…+x102)
∵10>0,
∴當(dāng)x= 時,y有最小值,
即x﹣x1)2+(x﹣x2)2+…+(x﹣x10)2有最小值時,x的值為210.8.
故答案為:210.8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是 ;
(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,每個小正方形的邊長都是1個單位長度,△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出將△ABC向右平移 2個單位長度后得到的△A1B1C1;
(2)作出將△ABC繞點(diǎn)O順時針旋轉(zhuǎn)90°后得到的△A2B2C2;
(3)求在(2)的旋轉(zhuǎn)變換中,線段BC掃過區(qū)域的面積(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A(3,0)、B(a,2)、C(0,m),D(n,0),且m2+n2=4,若E為CD中點(diǎn).則AB+BE的最小值為( )
A. 3 B. 4 C. 5 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)商經(jīng)銷一種暢銷玩具,每件進(jìn)價為18元,每月銷量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系如圖中線段AB所示.
(1)當(dāng)銷售單價為多少元時,該網(wǎng)商每月經(jīng)銷這種玩具能夠獲得最大銷售利潤?最大銷售利潤是多少?(銷售利潤=售價﹣進(jìn)價)
(2)如果該網(wǎng)商要獲得每月不低于3500元的銷售利潤.那么至少要準(zhǔn)備多少資金進(jìn)貨這種玩具?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖象中所反映的過程是:張強(qiáng)從家跑步去體育場,在那里鍛煉了一陣后,又 去早餐店吃早餐,然后散步走回家,其中 x 表示時間,y 表示張強(qiáng)離家的距離。根據(jù)圖象提供的信息,以下四個說法錯誤的是( )
A. 體育場離張強(qiáng)家2.5千米 B. 張強(qiáng)在體育場鍛煉了15分鐘
C. 體育場離早餐店4千米 D. 張強(qiáng)從早餐店回家的平均速度是3千米/小時
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C,AB=10cm,BC=8cm,E為AB的中點(diǎn),點(diǎn)P在線段BC上以3cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動;同時,點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動,當(dāng)點(diǎn)Q的速度為多少時,能夠使△BPE和△CQP全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線AB:y=﹣x+b交y軸于點(diǎn)A,交x軸于點(diǎn)B,S△AOB=8.
(1)求點(diǎn)B的坐標(biāo)和直線AB的函數(shù)表達(dá)式;
(2)直線a垂直平分OB交AB于點(diǎn)D,交x軸于點(diǎn)E,點(diǎn)P是直線a上一動點(diǎn),且在點(diǎn)D的上方,設(shè)點(diǎn)P的縱坐標(biāo)為m.
①用含m的代數(shù)式表示△ABP的面積;
②當(dāng)S△ABP=6時,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com