【題目】如圖,的三邊 的長分別為,其三條角平分線交于點,則=______

【答案】

【解析】

首先過點OODAB于點D,作OEAC于點E,作OFBC于點F,由OAOB,OC是△ABC的三條角平分線,根據(jù)角平分線的性質(zhì),可得OD=OE=OF,又由△ABC的三邊AB、BCCA長分別為40、5060,即可求得SABOSBCOSCAO的值.

解:過點OODAB于點D,作OEAC于點E,作OFBC于點F


OA,OB,OC是△ABC的三條角平分線,
OD=OE=OF
∵△ABC的三邊AB、BCCA長分別為40、50、60,
SABOSBCOSCAO=ABOD):(BCOF):(ACOE

=ABBCAC=405060=
故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】吉林省廣播電視塔(簡稱吉塔)是我省目前最高的人工建筑,也是俯瞰長春市美景的最佳去處.某科技興趣小組利用無人機搭載測量儀器測量吉塔的高度.已知如圖將無人機置于距離吉塔水平距離138米的點C處,則從無人機上觀測塔尖的仰角恰為30°,觀測塔基座中心點的俯角恰為45°.求吉塔的高度.(注: ≈1.73,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax+bx+c(a≠0)的部分圖象如圖,圖象過點(-1,0),對稱軸為直線x=2,下列結(jié)論:①拋物線與x軸的另一個交點是(5,0);②4a+c>2b;③4a+b=0;④當x>-1時,y的值隨x值的增大而增大.其中正確的結(jié)論有(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值:

1y(x+y)+(x+y)(x-y)-x2,其中x=-2,y=

2)(x+y2-2xx+y),其中x=3,y=2

3(a+b)22a(b+1)a2b÷b,其中a=2,b=2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,點P關(guān)于OA、OB的對稱點分別是P1,P2,線段P1P2分別交OA、OBD、C,P1P2=6cm,則PCD的周長為( 。

A.3cmB.6cmC.12cmD.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,CDAB于點D,CE是∠ACB的平分線,∠A20°,B60°,求∠BCD和∠ECD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知M的橫坐標是的平方根,縱坐標是2,且點My軸的距離是到x軸的距離的3倍。

1)求a的值;

2)求點M的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文化用品商店用元采購一批書包,上市后發(fā)現(xiàn)供不應求,很快銷售完了.商店又去采購第二批同樣款式的書包,進貨單價比第一次高元,商店用了元,所購數(shù)量是第一次的.

1)求第一批采購的書包的單價是多少元?

2)若商店按售價為每個書包元,銷售完這兩批書包,總共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=900,,且,若當時,代數(shù)式的值最小,且最小值為b.

1)求 ,的值.(2)求△ABC的面積 .

查看答案和解析>>

同步練習冊答案