【題目】在平面直角坐標系O中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…, 按圖所示的方式放置.點A1、A2、A3,…和點B1、B2、B3,…分別在直線和軸上.已知C1(1,-1),C2(, ),則點A3的坐標是________________________.
【答案】(,).
【解析】試題解析:連接A1C1,A2C2,A3C3,分別交x軸于點E、F、G,
∵正方形A1B1C1O、A2B2C2B1、A3B3C3B2,
∴A1與C1關(guān)于x軸對稱,A2與C2關(guān)于x軸對稱,A3與C3關(guān)于x軸對稱,
∵C1(1,-1),C2(, ),
∴A1(1,1),A2(, ),
∴OB1=2OE=2,OB2=OB1+2B1F=2+2×(-2)=5,
將A1與A2的坐標代入y=kx+b中得: ,
解得: ,
∴直線解析式為y=x+,
設(shè)B2G=A3G=t,則有A3坐標為(5+t,t),
代入直線解析式得:b=(5+t)+,
解得:t=,
∴A3坐標為(, ).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在Rt△ABC中,斜邊AB=10,sinA= ,點P為邊AB上一動點(不與A,B重合),PQ平分∠CPB交邊BC于點Q,QM⊥AB于M,QN⊥CP于N.
(1)當AP=CP時,求QP;
(2)若四邊形PMQN為菱形,求CQ;
(3)探究:AP為何值時,四邊形PMQN與△BPQ的面積相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(﹣1,0)、(5,0)、(0、﹣5).
(1)求此二次函數(shù)的解析式;
(2)當0≤x≤5時,求此函數(shù)的最小值與最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y= 在第一象限的圖象經(jīng)過點B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為( )
A.36
B.12
C.6
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABF中,以AB為直徑的圓分別交邊AF、BF于C、E兩點,CD⊥AF.AC是∠DAB的平分線,
(1)求證:直線CD是⊙O的切線.
(2)求證:△FEC是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正比例函數(shù)y1=k1x(k1>0)與反比例函數(shù)y2= (k2>0)部分圖象如圖所示,則不等式k1x> 的解集在數(shù)軸上表示正確的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們學(xué)習(xí)了勾股定理后,都知道“勾三、股四、弦五”.
觀察:3、4、5;5、12、13;7、24、25;9、40、41;…,發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒有間斷過.
(1)請你根據(jù)上述的規(guī)律寫出下一組勾股數(shù):________.
(2)若第一個數(shù)用字母n(n為奇數(shù),且n≥3)表示,那么后兩個數(shù)用含n的代數(shù)式分別表示為________和________,請用所學(xué)知識說明它們是一組勾股數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠BAC=106°,EF、MN分別是AB、AC的垂直平分線,點E、M在BC上,則∠EAN=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)市委和市政府“綠色環(huán)保,節(jié)能減排”的號召,幸福商場用3300元購進甲、乙兩種節(jié)能燈共計100只,很快售完.這兩種節(jié)能燈的進價、售價如下表:
進價(元/只) | 售價(元/只) | |
甲種節(jié)能燈 | 30 | 40 |
甲種節(jié)能燈 | 35 | 50 |
(1)求幸福商場甲、乙兩種節(jié)能燈各購進了多少只?
(2)全部售完100只節(jié)能燈后,商場共計獲利多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com