如圖,已知,AB∥CD,∠1=∠2,BE與CF平行嗎?為什么?

證明:能平行.
理由:∵AB∥CD(已知),
∴∠ABC=∠BCD(兩直線平行,內(nèi)錯(cuò)角相等);
又∠1=∠2,
∴∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF,
∴BE∥CF(內(nèi)錯(cuò)角相等,兩直線平行).
分析:根據(jù)兩直線AB∥CD,推知內(nèi)錯(cuò)角∠ABC=∠BCD;然后再由已知條件∠1=∠2得到∠ABC-∠1=∠BCD-∠2,即內(nèi)錯(cuò)角∠EBC=∠BCF,所以根據(jù)平行線的判定定理:內(nèi)錯(cuò)角相等,兩直線平行,得出BE∥CF的結(jié)論.
點(diǎn)評(píng):本題考查了平行線的判定與性質(zhì).解答此題的關(guān)鍵是注意平行線的性質(zhì)和判定定理的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,已知直線AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,則∠C的度數(shù)為
120

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,已知線段AB=6,延長(zhǎng)線段AB到C,使BC=2AB,點(diǎn)D是AC的中點(diǎn),則AC的長(zhǎng)為
18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•溫州一模)如圖,已知線段AB,
(1)線段AB為腰作一個(gè)黃金三角形(尺規(guī)作圖,要求保留作圖痕跡,不必寫出作法);
(友情提示:三角形兩邊之比為黃金比的等腰三角形叫做黃金三角形)
(2)若AB=2,求出你所作的黃金三角形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖①,已知弧AB,用尺規(guī)作圖,作出弧AB的圓心P;
(2)如圖②,若弧AB半徑PA為18,圓心角為120°,半徑為2的⊙O,從弧AB的一個(gè)端點(diǎn)A(切點(diǎn))開始先在外側(cè)滾動(dòng)到另一個(gè)端點(diǎn)B(切點(diǎn)),再旋轉(zhuǎn)到內(nèi)側(cè)繼續(xù)滾動(dòng),最后轉(zhuǎn)回到初始位置,⊙O自轉(zhuǎn)多少周?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知線段AB、CD分別表示甲、乙兩幢樓的高,AB⊥BD,CD⊥BD,從甲樓頂部A處測(cè)得乙樓頂部C的仰角α=30°,測(cè)得乙樓底部D的俯角β=60°,已知甲樓高AB=24m,求乙樓CD的高.

查看答案和解析>>

同步練習(xí)冊(cè)答案