【題目】在一次數(shù)學(xué)興趣小組活動中,李燕和劉凱兩位同學(xué)設(shè)計了如圖所示的兩個轉(zhuǎn)盤做游戲(每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內(nèi)標上數(shù)字).游戲規(guī)則如下:兩人分別同時轉(zhuǎn)動甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針所指區(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針所指區(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針所指區(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).
(1)請用列表或畫樹狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;
(2)分別求出李燕和劉凱獲勝的概率.
【答案】(1) 兩數(shù)和共有12種等可能結(jié)果;(2) 李燕獲勝的概率為;劉凱獲勝的概率為.
【解析】試題分析:(1)根據(jù)題意列出表格,得出游戲中兩數(shù)和的所有可能的結(jié)果數(shù);
(2)根據(jù)(1)得出兩數(shù)和共有的情況數(shù)和其中和小于12的情況、和大于12的情況數(shù),再根據(jù)概率公式即可得出答案.
試題解析:解:(1)根據(jù)題意列表如下:
可見,兩數(shù)和共有12種等可能性;
(2)由(1)可知,兩數(shù)和共有12種等可能的情況,其中和小于12的情況有6種,和大于12的情況有3種,∴李燕獲勝的概率為=;劉凱獲勝的概率為=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)A產(chǎn)品x噸所需費用為P元,而賣出x噸這種產(chǎn)品的售價為每噸Q元, 已知P=x2+5x+1000,Q=-+45.
(1)該廠生產(chǎn)并售出x噸,寫出這種產(chǎn)品所獲利潤W(元)關(guān)于x(噸)的函數(shù)關(guān)系式;
(2)當(dāng)生產(chǎn)多少噸這種產(chǎn)品,并全部售出時,獲利最多?這時獲利多少元? 這時每噸的價格又是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在4×4的正方形網(wǎng)格中,每個小正方形的頂點稱為格點,每個小正方形的邊長均為1.在圖①,圖②中已畫出線段AB,在圖③中已畫出點A.按下列要
求畫圖:
(1)在圖①中,以格點為頂點,AB為一邊畫一個等腰三角形ABC;
(2)在圖②中,以格點為頂點,AB為一邊畫一個正方形;
(3)在圖③中,以點A為一個頂點,另外三個頂點也在格點上,畫一個面積最大的正方
形,這個正方形的面積= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=6cm,BC=4cm,點D為AB的中點.
⑴如果點P在線段BC上以1cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPD與△CPQ是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為______cm/s時,在某一時刻也能夠使△BPD與△CPQ全等.
⑵若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都按逆時針方向沿△ABC的三邊運動.求經(jīng)過多少秒后,點P與點Q第一次相遇,并寫出第一次相遇點在△ABC的哪條邊上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長度為1個單位長度的小正方形組成的正方形網(wǎng)格中,點A、B、C在小正方形的頂點上.
(1)在圖中畫出與關(guān)于直線成軸對稱的△A′B′C′;
(2)線段CC′被直線 ;
(3)△ABC的面積為 ;
(4)在直線上找一點P,使PB+PC的長最短.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB邊上的中點,點D,E分別在AC,BC邊上運動,且保持AD=CE.連接DE,DF,EF.在此運動變化的過程中,下列結(jié)論:
①△DFE是等腰直角三角形;
②四邊形CDFE不可能為正方形,
③DE長度的最小值為4;
④四邊形CDFE的面積保持不變;
⑤△CDE面積的最大值為8.
其中正確的結(jié)論是( )
A. ①②③ B. ①④⑤ C. ①③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AD是角平分線,∠B=54°,∠C=76°.
(1)求∠ADB和∠ADC的度數(shù);
(2)若DE⊥AC,求∠EDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E,
(1)求證:四邊形ADCE為矩形;
(2)當(dāng)△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是邊BC上的一點,DE⊥AB,DF⊥AC,垂足分別是E、F,EF∥BC.
(1)求證:△BDE≌△CDF;
(2)若BC=2AD,求證:四邊形AEDF是正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com