【題目】如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB邊上的中點,點D,E分別在AC,BC邊上運動,且保持AD=CE.連接DE,DF,EF.在此運動變化的過程中,下列結論:
①△DFE是等腰直角三角形;
②四邊形CDFE不可能為正方形,
③DE長度的最小值為4;
④四邊形CDFE的面積保持不變;
⑤△CDE面積的最大值為8.
其中正確的結論是( )
A. ①②③ B. ①④⑤ C. ①③④ D. ③④⑤
【答案】B
【解析】試題分析:解此題的關鍵在于判斷△DEF是否為等腰直角三角形,作常規(guī)輔助線連接CF,由SAS定理可證△CFE和△ADF全等,從而可證∠DFE=90°,DF=EF.所以△DEF是等腰直角三角形.可證①正確,②錯誤,再由割補法可知④是正確的;
判斷③,⑤比較麻煩,因為△DEF是等腰直角三角形DE=DF,當DF與BC垂直,即DF最小時,DE取最小值4,故③錯誤,△CDE最大的面積等于四邊形CDEF的面積減去△DEF的最小面積,由③可知⑤是正確的.故只有①④⑤正確.
解:連接CF;
∵△ABC是等腰直角三角形,
∴∠FCB=∠A=45°,CF=AF=FB;
∵AD=CE,
∴△ADF≌△CEF(SAS);
∴EF=DF,∠CFE=∠AFD;
∵∠AFD+∠CFD=90°,
∴∠CFE+∠CFD=∠EFD=90°,
∴△EDF是等腰直角三角形(故①正確).
當D、E分別為AC、BC中點時,四邊形CDFE是正方形(故②錯誤).
∵△ADF≌△CEF,
∴S△CEF=S△ADF∴S四邊形CEFD=S△AFC,(故④正確).
由于△DEF是等腰直角三角形,因此當DE最小時,DF也最。
即當DF⊥AC時,DE最小,此時DF=BC=4.
∴DE=DF=4(故③錯誤).
當△CDE面積最大時,由④知,此時△DEF的面積最。
此時S△CDE=S四邊形CEFD﹣S△DEF=S△AFC﹣S△DEF=16﹣8=8(故⑤正確).
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級10個班師生舉行畢業(yè)文藝匯演,每班2個節(jié)目,有歌唱與舞蹈兩類節(jié)目,年級統(tǒng)計后發(fā)現(xiàn)歌唱類節(jié)目數(shù)比舞蹈類節(jié)目數(shù)的2倍少4個.
(1)九年級師生表演的歌唱與舞蹈類節(jié)目數(shù)各有多少個?
(2)該校七、八年級師生有小品節(jié)目參與,在歌唱、舞蹈、小品三類節(jié)目中,每個節(jié)目的演出平均用時分別是5分鐘、6分鐘、8分鐘,預計所有演出節(jié)目交接用時共花15分鐘.若從20:00開始,22:30之前演出結束,問參與的小品類節(jié)目最多能有多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,矩形ABCD的邊AB=3,AD=2,將此矩形置入直角坐標系中,使AB在x 軸上,點C 在直線y=x-2上.
(1)求矩形各頂點坐標;
(2)若直線y=x-2與y軸交于點E,拋物線過E、A、B三點,求拋物線的關系式;
(3)判斷上述拋物線的頂點是否落在矩形ABCD內(nèi)部,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為弘揚中華傳統(tǒng)文化,黔南州近期舉辦了中小學生“國學經(jīng)典大賽”.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式分“單人組”和“雙人組”.
(1)小麗參加“單人組”,她從中隨機抽取一個比賽項目,恰好抽中“三字經(jīng)”的概率是多少?
(2)小紅和小明組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請用畫樹狀圖或列表的方法進行說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次數(shù)學興趣小組活動中,李燕和劉凱兩位同學設計了如圖所示的兩個轉盤做游戲(每個轉盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內(nèi)標上數(shù)字).游戲規(guī)則如下:兩人分別同時轉動甲、乙轉盤,轉盤停止后,若指針所指區(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針所指區(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針所指區(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉一次,直到指針指向某一份內(nèi)為止).
(1)請用列表或畫樹狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結果;
(2)分別求出李燕和劉凱獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某港口位于東西方向的海岸線上.“遠航”號、“海天”號輪船同時離開港口,各自沿一固定方向航行,“遠航”號每小時航行16海里,“海天”號每小時航行12海里.它們離開港口一個半小時后相距30海里.如果知道“遠航”號沿東北方向航行,能知道“海天”號沿哪個方向航行?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°, BC=3cm, CD⊥AB于D, 在AC上取一點E,使EC=BC,過點E作EF⊥AC交CD的延長線于點F,若EF=5cm,求AE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,∠AOB=∠COD=90°,射線OE,FO分別平分∠AOC和∠BOD.
(1)當OB和OC重合時,如圖(1),求∠EOF的度數(shù);
(2)當∠AOB繞點O逆時針旋轉至圖(2)的位置(0°<∠BOC<90°)時,求∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2007年5月19日起,中國人民銀行上調(diào)存款利率.
人民幣存款利率調(diào)整表:
項 目 | 調(diào)整前年利率% | 調(diào)整后年利率% |
活期存款 | 0.72 | 0.72 |
二年期定期存款 | 2.79 | 3.06 |
儲戶的實得利息收益是扣除利息稅后的所得利息,利息稅率為20%.
(1)小明于2007年5月19日把3500元的壓歲錢按一年期定期存入銀行,到期時他實得利息收益是多少元?
(2)小明在這次利率調(diào)整前有一筆一年期定期存款,到期時按調(diào)整前的年利率2.79%計息,本金與實得利息收益的和為2555.8元,問他這筆存款的本金是多少元?
(3)小明爸爸有一張在2007年5月19日前存人的10000元的一年期定期存款單,為獲取更大的利息收益,想把這筆存款轉存為利率調(diào)整后的一年期定期存款.問他是否應該轉存?請說明理由.
約定:①存款天數(shù)按整數(shù)天計算,一年按360天計算利息.
②比較利息大小是指從首次存入日開始的一年時間內(nèi).獲得的利息比較.如果不轉存,利息按調(diào)整前的一年期定期利率計算;如果轉存,轉存前已存天數(shù)的利息按活期利率計算,轉存后,余下天數(shù)的利息按調(diào)整后的一年期定期利率計算(轉存前后本金不變).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com